首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A disease-causing G-to-T transversion at position +6 of BRCA1 exon 18 induces exclusion of the exon from the mRNA and, as has been suggested by in silico analysis, disrupts an ASF/SF2-dependent splicing enhancer. We show here using a pulldown assay with an internal standard that wild-type (WT) and mutant T6 sequences displayed similar ASF/SF2 binding efficiencies, which were significantly lower than that of a typical exonic splicing enhancer derived from the extra domain A exon of fibronectin. Overexpression or small interfering RNA (siRNA)-mediated depletion of ASF/SF2 did not affect the splicing of a WT BRCA1 minigene but resulted in an increase and decrease of T6 exon 18 inclusion, respectively. Furthermore, extensive mutation analysis using hybrid minigenes indicated that the T6 mutant creates a sequence with a prevalently inhibitory function. Indeed, RNA-protein interaction and siRNA experiments showed that the skipping of T6 BRCA1 exon 18 is due to the creation of a splicing factor-dependent silencer. This sequence specifically binds to the known repressor protein hnRNPA1/A2 and to DAZAP1, the involvement of which in splicing inhibition we have demonstrated. Our results indicate that the binding of the splicing factors hnRNPA1/A2 and DAZAP1 is the primary determinant of T6 BRCA1 exon 18 exclusion.  相似文献   

3.
4.
Heterogeneous nuclear ribonucleoprotein A1 and A2 (hnRNP A1/2) is a ubiquitously expressed RNA binding protein known to bind intronic or exonic splicing silencer. Binding of hnRNP A1/2 to survival of motor neuron gene (SMN1/2) exon 7 and flanking sequences strongly inhibits the inclusion of exon 7, which causes spinal muscular atrophy, a common genetic disorder. However, the role of hnRNP A1/2 on the side away from exon 7 is unclear. Here using antisense oligonucleotides, we fished an intronic splicing enhancer (ISE) near the 3′-splice site (SS) of intron 7 of SMN1/2. Mutagenesis identified the efficient motif of the ISE as “UAGUAGG”, coupled with RNA pull down and protein overexpression, we proved that hnRNP A1/2 binding to the ISE promotes the inclusion of SMN1/2 exon 7. Using MS2-tethering array and “UAGGGU” motif walking, we further uncovered that effects of hnRNP A1/2 on SMN1/2 exon 7 splicing are position-dependent: exon 7 inclusion is inhibited when hnRNP A1/2 binds proximal to the 5′SS of intron 7, promoted when its binds proximal to the 3′SS. These data provide new insights into the splicing regulatory mechanism of SMN1/2.  相似文献   

5.
Skoko N  Baralle M  Buratti E  Baralle FE 《FEBS letters》2008,582(15):2231-2236
We have previously identified an ESE in NF1 exon 37 whose disruption by the pathological mutation c.6792C>G caused aberrant splicing. We now investigate the RNA-protein complexes affected by the c.6792C>G mutation observing that this concurrently decreases the affinity for the positive splicing factor YB-1 and increases the affinity for the negative splicing factors, hnRNPA1, hnRNPA2 and a new player in these type of complexes, DAZAP1. Our findings highlight the complexity of the interplay between positive and negative factors in the exon inclusion/skipping outcome. Furthermore, our observations stress the role of a wide genomic context in NF1 exon 37 definition.  相似文献   

6.
7.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. An almost identical SMN2 gene is unable to compensate for this deficiency because a single C‐to‐T transition at position +6 in exon‐7 causes skipping of the exon by a mechanism not yet fully elucidated. We observed that the C‐to‐T transition in SMN2 creates a putative binding site for the RNA‐binding protein Sam68. RNA pull‐down assays and UV‐crosslink experiments showed that Sam68 binds to this sequence. In vivo splicing assays showed that Sam68 triggers SMN2 exon‐7 skipping. Moreover, mutations in the Sam68‐binding site of SMN2 or in the RNA‐binding domain of Sam68 completely abrogated its effect on exon‐7 skipping. Retroviral infection of dominant‐negative mutants of Sam68 that interfere with its RNA‐binding activity, or with its binding to the splicing repressor hnRNP A1, enhanced exon‐7 inclusion in endogenous SMN2 and rescued SMN protein expression in fibroblasts of SMA patients. Our results thus indicate that Sam68 is a novel crucial regulator of SMN2 splicing.  相似文献   

8.
9.
Alternative splicing of fibroblast growth factor receptor-2 (FGFR2) mutually exclusive exons IIIb and IIIc results in highly cell-type-specific expression of functionally distinct receptors, FGFR2-IIIb and FGFR2-IIIc. We previously identified an RNA cis-element, ISE/ISS-3, that enhanced exon IIIb splicing and silenced exon IIIc splicing. Here, we have performed comprehensive mutational analysis to define critical sequence motifs within this element that independently either enhance splicing of upstream exons or repress splicing of downstream exons. Such analysis included use of a novel fluorescence-based splicing reporter assay that allowed quantitative determination of relative functional activity of ISE/ISS-3 mutants using flow cytometric analysis of live cells. We determined that specific sequences within this element that mediate splicing enhancement also mediate splicing repression, depending on their position relative to a regulated exon. Thus, factors that bind the element are likely to be coordinately involved in mediating both aspects of splicing regulation. Exon IIIc silencing is dependent upon a suboptimal branchpoint sequence containing a guanine branchpoint nucleotide. Previous studies of exon IIIc splicing in HeLa nuclear extracts demonstrated that this guanine branchsite primarily impaired the second step of splicing suggesting that ISE/ISS-3 may block exon IIIc inclusion at this step. However, results presented here that include use of newly developed in vitro splicing assays of FGFR2 using extracts from a cell line expressing FGFR2-IIIb strongly suggest that cell-type-specific silencing of exon IIIc occurs at or prior to the first step of splicing.  相似文献   

10.
11.
12.
We report here the identification and characterization of a novel SR‐related protein, referred to as SRrp37, based on its apparent molecular weight and subcellular location. SRrp37 was identified through a yeast two‐hybrid screen during the course of searching for proteins interacting with pNO40, a ribosomal 60S core subunit. SRrp37 exhibited two alternative spliced isoforms generated by differential usage of the translation start site with the longer one, SRrp37, initiating at first exon and the shorter, SRrp37‐2, starting from exon 2. Three distinct motifs can be discerned in the SRrp37 protein: (1) a serine–arginine (SR) dipeptide enriched domain, (2) a polyserine stretch, and (3) a potential nucleolar localization signal comprising a long array of basic amino acids. SRrp37's message was translated in tissue‐specific patterns with both isoforms expressed at comparable levels in tissues showing expression. Indirect immunofluorescence analysis with an anti‐SRrp37 antibody, as well as an experiment using myc‐tagged proteins, demonstrated that SRrp37 was localized in nucleoli and nuclear speckles. GST pull‐down assay showed that SRrp37 interacted physically with SC35. Using adenovirus E1A and chimeric calcitonin/dhfr constructs as splicing reporter minigenes, we found that SRrp37 modulated alternative 5′ and 3′ splicing in vivo. Together, SRrp37 may participate directly in splicing regulation or indirectly through interaction with SC35. Studies on this novel splicing regulator may provide new information on the intricate splicing machinery as related to the RNA metabolism involving processing of mRNA and rRNA. J. Cell. Biochem. 108: 304–314, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The RNA-binding protein TDP-43, associated to amyotrophic lateral sclerosis and frontotemporal dementia, regulates the alternative splicing of several genes, including the skipping of TNIK exon 15. TNIK, a genetic risk factor for schizophrenia and causative for intellectual disability, encodes for a Ser/Thr kinase regulating negatively F-actin dynamics.Here we show that in the human adult nervous system TNIK exon 15 is mostly included compared to the other tissues and that, during neuronal differentiation of human induced pluripotent stem cells and of human neuroblastoma cells, TNIK exon 15 inclusion increases independently of TDP-43 protein content. By studying the possible molecular interplay of TDP-43 with brain-specific splicing factors, we found that the neuronal NOVA-1 protein competitively inhibits both TDP-43 and hnRNPA2/B1 skipping activity on TNIK by means of a RNA-dependent interaction and that this competitive mechanism is common to other TDP-43 RNA targets. We also show that the TNIK protein isoforms including/excluding exon 15 differently regulate cell spreading in non-neuronal cells and neuritogenesis in primary cortical neurons.Our data suggest a complex regulation between the ubiquitous TDP-43 and the neuron-specific NOVA-1 splicing factors in the brain that may help better understand the pathobiology of both neurodegenerative diseases and schizophrenia.  相似文献   

14.
The cell type-specific, mutually-exclusive alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) pre-mRNA is tightly regulated. A sequence termed ISAR (intronic splicing activator and repressor) has been implicated as an important cis regulatory element in both activation of exon IIIb and repression of exon IIIc splicing in epithelial cells. In order to better understand how this single sequence could have dual roles, we transfected minigenes containing a series of 2-bp mutations in the 18 3′-most nucleotides of ISAR that we refer to as the ISAR core. Transfection of cells with dual-exon (IIIb and IIIc) minigenes revealed that mutation of terminal sequences of the core led to decreased exon IIIb inclusion and increased exon IIIc inclusion. Transfection of cells with single-exon IIIb minigenes and single-exon IIIc minigenes revealed that mutation of terminal sequences of the ISAR core led to decreased exon IIIb inclusion and increased exon IIIc inclusion, respectively. Nucleotides of the ISAR core responsible for exon IIIb activation appear to overlap very closely with those required for exon IIIc repression. We describe a model in which ISAR and a 5′ intronic sequence known as IAS2 form a stem structure required for simultaneous exon IIIb activation and exon IIIc repression.  相似文献   

15.
16.
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is one of the most common human hereditary disorders, predisposing individuals to the development of benign and malignant tumors in the nervous system, as well as other clinical manifestations. NF1 is caused by heterozygous mutations in the NF1 gene and around 25% of the pathogenic changes affect pre-mRNA splicing. Since the molecular mechanisms affected by these mutations are poorly understood, we have analyzed the splicing mutations identified in exon 9 of NF1, which is particularly prone to such changes, to better define the possible splicing regulatory elements. Using a minigene approach, we studied the effect of five splicing mutations in this exon described in patients. These highlighted three regulatory motifs within the exon. An in vivo splicing analysis of an extensive collection of changes generated in the minigene demonstrated that the CG motif at c.910-911 is critical for the recognition of exon 9. We also found that the GC motif at c.945-946 is involved in exon recognition through SRSF2 and that this motif is part of a Composite Exon Splicing Regulatory Element made up of physically overlapping enhancer and silencer elements. Finally, through an in vivo splicing analysis and in vitro binding assays, we demonstrated that the c.1007G>A mutation creates an Exonic Splicing Silencer element that binds the hnRNPA1 protein. The complexity of the splicing regulatory elements present in exon 9 is most likely responsible for the fact that mutations in this region represent 25% of all exonic changes that affect splicing in the NF1 gene.  相似文献   

18.
The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n > 50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscleblind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.  相似文献   

19.
Markus MA  Marques FZ  Morris BJ 《PloS one》2011,6(12):e28926
Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 μM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 μg/ml and 50 μg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号