首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Sin3 is an evolutionarily conserved corepressor that exists in different complexes with the histone deacetylases HDAC1 and HDAC2. Sin3-HDAC complexes are believed to deacetylate nucleosomes in the vicinity of Sin3-regulated promoters, resulting in a repressed chromatin structure. We have previously found that a human Sin3-HDAC complex includes HDAC1 and HDAC2, the histone-binding proteins RbAp46 and RbAp48, and two novel polypeptides SAP30 and SAP18. SAP30 is a specific component of Sin3 complexes since it is absent in other HDAC1/2-containing complexes such as NuRD. SAP30 mediates interactions with different polypeptides providing specificity to Sin3 complexes. We have identified p33ING1b, a negative growth regulator involved in the p53 pathway, as a SAP30-associated protein. Two distinct Sin3-p33ING1b-containing complexes were isolated, one of which associates with the subunits of the Brg1-based Swi/Snf chromatin remodeling complex. The N terminus of p33ING1b, which is divergent among a family of ING1 polypeptides, associates with the Sin3 complex through direct interaction with SAP30. The N-terminal domain of p33 is present in several uncharacterized human proteins. We show that overexpression of p33ING1b suppresses cell growth in a manner dependent on the intact Sin3-HDAC-interacting domain.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Androgen receptor (AR) that mediates androgen action is a crucial factor in male reproductive functions. Here, we report a novel AR corepressor ARR19 (androgen receptor corepressor-19 kDa), which has been isolated as a putative androgen-induced gene from murine testis. ARR19 encoding a leucine-rich protein is expressed only in male reproductive organs such as testis and prostate. ARR19 expression in the testis is developmentally regulated. Functional analysis conducted by the transient transfection of mammalian cells shows that ARR19 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid and glutathione S-transferase pull-down analyses reveal that ARR19 directly associates with AR through the N-terminal and leucine zipper-containing regions of ARR19 and the DNA binding-hinge domain of AR. Interestingly, ARR19 localized in the cytoplasmic compartment cotranslocates into the nucleus with AR upon androgen exposure. The ARR19 repression of AR transactivation is through the recruitment of histone deacetylase 4 (HDAC4) by ARR19. Overexpression of HDAC4 further inhibits the ARR19-repressed AR transactivation. In addition, ARR19 directly interacts with HDAC4 in vitro. Furthermore, DNA-protein complex immunoprecipitation assays reveal that HDAC4 is recruited to an androgen-regulated promoter through ARR19. Taken together, the results suggest that ARR19 may act as an AR corepressor in vivo and play an important role in male reproductive functions.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号