首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂蛋白酯酶(lipoprotein lipase, LPL)是调节甘油三酯代谢的关键酶,在动脉粥样硬化(atherosclerosis,As)的发生发展中起重要作用。LPL产生部位的差异决定了其具有促As作用还是抗As作用。其次,不同因素对LPL的调控也会使LPL对As产生相反的作用效果。本文综述了LPL在As发生发展中的作用机制以及不同因素对LPL的调控机制,对于As的防治具有重要意义。  相似文献   

2.
Receptor-mediated mechanisms of lipoprotein remnant catabolism   总被引:6,自引:0,他引:6  
Chylomicron and VLDL are triglyceride-rich lipoprotein particles assembled by the intestine and liver respectively. These particles are not metabolized by the liver in their native form. However, upon entry into the plasma, their triglyceride component is rapidly hydrolyzed by lipoprotein lipase and they are converted to cholesterol-rich remnant particles. The remnant particles are recognized by the liver and rapidly cleared from the plasma. This process is believed to occur in two steps. (i) An initial sequestration of remnant particles on hepatic cell surface proteoglycans, and (ii) receptor-mediated endocytosis of remnants by hepatic parenchymal cells. The initial binding to proteoglycans may be facilitated by lipoprotein lipase and hepatic lipase which possess both lipid- and heparin-binding domains. The subsequent endocytic process may be mediated by LDL receptors and/or LRP. Both receptors have a high affinity for apoE, a major apolipoprotein component of remnant particles. The lipases may also serve as ligands for these receptors. An impairment of any component of this complex process may result in an accumulation of remnant particles in the plasma leading to atherosclerosis and coronary heart disease.  相似文献   

3.
4.
Statins decrease triglycerides (TGs) in addition to decreasing low density lipoprotein-cholesterol. Although the mechanism for the latter effect is well understood, it is still unclear how TG decrease is achieved with statin therapy. Because hypertriglyceridemia is common in obese patients with type 2 diabetes mellitus, we studied triglyceride-rich lipoprotein triglyceride (TRL-TG) turnover in 12 such subjects using stable isotopically labeled glycerol. The diabetic subjects were studied after 12 weeks of placebo and after a similar course of therapy with simvastatin (80 mg daily) in a single-blind design. The results were compared with those from six nonobese nondiabetic control subjects. Simvastatin therapy reduced serum TGs by 35% in the diabetic subjects. Compared with the control subjects, TRL-TG secretion was almost 2-fold higher in the diabetic subjects (45.4 +/- 4.9 vs. 24.4 +/- 1.9 micromol/min; P < 0.002) and was unaffected by simvastatin therapy. However, TRL-TG clearance was significantly increased in the diabetic subjects during simvastatin treatment compared with placebo (0.25 +/- 0.03 vs. 0.16 +/- 0.02 pools/h; P < 0.002). This change was accompanied by a 49% increase in preheparin plasma lipase activity (P < 0.03) and a 21% increase in postheparin LPL activity (P < 0.01). Together, these findings provide strong evidence that the effect of statins on serum TGs is related to an increase in LPL activity, resulting in accelerated delipidation of TRL particles. The effect of high-dose simvastatin on triglyceride-rich lipoprotein metabolism in patients with type 2 diabetes mellitus.  相似文献   

5.
Separation of lipoproteins by traditional sequential salt density floatation is a prolonged process ( approximately 72 h) with variable recovery, whereas iodixanol-based, self-generating density gradients provide a rapid ( approximately 4 h) alternative. A novel, three-layered iodixanol gradient was evaluated for its ability to separate lipoprotein fractions in 63 subjects with varying degrees of dyslipidemia. Lipoprotein cholesterol, triglycerides, and apolipoproteins were measured in 21 successive iodixanol density fractions. Iodixanol fractionation was compared with sequential floatation ultracentrifugation. Iodixanol gradient formation showed a coefficient of variation of 0.29% and total lipid recovery from the gradient of 95.4% for cholesterol and 84.7% for triglyceride. Recoveries for VLDL-, LDL-, and HDL-cholesterol, triglycerides, and apolipoproteins were approximately 10% higher with iodixanol compared with sequential floatation. The iodixanol gradient effectively discriminated classic lipoproteins and their subfractions, and there was evidence for improved resolution of lipoproteins with the iodixanol gradient. LDL particles subfractionated by the gradient showed good correlation between density and particle size with small, dense LDL (<25.5 nm) separated in fractions with density >1.028 g/dl. The new iodixanol density gradient enabled rapid separation with improved resolution and recovery of all lipoproteins and their subfractions, providing important information with regard to LDL phenotype from a single centrifugation step with minimal in-vitro modification of lipoproteins.  相似文献   

6.
Atherosclerosis is commonly found in diabetes. There is an association between small dense low density lipoprotein (LDL) phenotype, which is more prevalent in the diabetic state, and atherosclerosis. Small dense LDL is more easily oxidised and it is possible that fatty acid compositional changes, particularly an increase in polyunsaturated fatty acids, could underlie this association. However, there is little information about fatty acids in the different LDL phenotypes in the literature. This study examined LDL subfraction composition in 18 non-insulin-dependent diabetic (NIDDM) patients and 11 control subjects. LDL was isolated and fractionated into LDL 1, 2 and 3 by density gradient ultracentrifugation. NIDDM patients had significantly more fatty acids in all LDL subfractions than control subjects (P<0.01). Palmitic and linoleic acid were significantly greater in all subfractions in the diabetic patients compared to control subjects (P<0.01) and palmitoleic and oleic acids were also greater in LDL1 and LDL2 in diabetic patients (P<0.01). We conclude that in NIDDM fatty acids are increased in all LDL subfractions and this may be the reason for the increased atherosclerosis in diabetes irrespective of phenotype.  相似文献   

7.
The paper describes a cattle serum antigen (LdlA1) located on a low-density lipoprotein and detected by single radial diffusion. The specificity is inherited in a simple Mendelian manner and the gene controlling its synthesis is inherited independently from the one controlling the synthesis of the α2 macroglobulin McA1 antigen.  相似文献   

8.
The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89–8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.  相似文献   

9.
We studied the effect of variation at the lipoprotein lipase (LPL) gene locus on the susceptibility of individuals with non-insulin dependent diabetes mellitus (NIDDM) in a population of 110 NIDDM patients and 91 controls. Our objective was to study the relationship between the LPL-Pvu II polymorphism and NIDDM and lipid metabolism. PCR-RFLP was used to determine the DNA polymorphism of the sixth intron of the LPL gene. The frequencies of the genotypes in case and control groups were 29.1 and 30.8% for P+/P+; 45.5 and 36.3% for P+/P-; 25.5 and 33% for P-/P- respectively. There was no significant difference in frequencies of genotypes between the two groups. Logistic regression analysis revealed that triacylglycerol (TAG) and apolipoprotein E levels were associated with NIDDM, whereas Pvu II genotypes were not found as independent risk factors for the disease. Overall this study demonstrates the role of the Pvu II polymorphism in the LPL gene in modulating plasma lipid/lipoprotein levels in patients with NIDDM.  相似文献   

10.
Carriers of the apolipoprotein A-IMilano (apoA-IM) variant, R173C, have reduced levels of plasma HDL but no increase in cardiovascular disease. Despite intensive study, it is not clear whether the removal of the arginine or the introduction of the cysteine is responsible for this altered functionality. We investigated this question using two engineered variations of the apoA-IM mutation: R173S apoA-I, similar to apoA-IM but incapable of forming a disulfide bond, and R173K apoA-I, a conservative mutation. Characterization of the lipid-free proteins showed that the order of stability was wild type≈R173K>R173S>R173C. Compared with wild-type apoA-I, apoA-IM had a lower affinity for lipids, while R173S apoA-I displayed intermediate affinity. The in vivo effects of the apoA-I variants were measured by injecting apoA-I-expressing adeno-associated virus into apoA-I-null mice. Mice that expressed the R173S variant again showed an intermediate phenotype. Thus, both the loss of the arginine and its replacement by a cysteine contribute to the altered properties of apoA-IM. The arginine is potentially involved in an intrahelical salt bridge with E169 that is disrupted by the loss of the positively charged arginine and repelled by the cysteine, destabilizing the helix bundle domain in the apoA-I molecule and modifying its lipid binding characteristics.  相似文献   

11.
Apolipoprotein kinetics are customarily determined by modeling time curves of specific radioactivity or isotopic enrichment in plasma after intravenous infusion of radiolabeled lipoproteins or stable isotope-enriched amino acids. However, this provides no information on the fractional rate of transfer of the apolipoprotein from plasma to interstitial fluid (k(p-if)) or its mean residence time in interstitial fluid (MRT(if)). To determine these parameters for a pharmacologic dose of exogenous apolipoprotein A-I (apoA-I) given intravenously as apoA-I/lecithin discs, we measured apoA-I in plasma and prenodal leg lymph in five healthy men before, during, and after a 4 h infusion at 10 mg/kg/h. ApoA-I concentrations in plasma and lymph were modeled by linear compartmental models (SAAM II version 1.1), using lymph albumin to adjust for the effects of variations in lymph flow rate. k(p-if) averaged 0.75%/h (range, 0.33-1.32), and MRT(if) averaged 29.1 h (14.1-40.0). Neither parameter was correlated with the distribution volume (57-105 ml/kg) or the fractional elimination rate (1.44-2.91%/h) of apoA-I, determined by modeling plasma apoA-I concentration alone. Although used here to study the mass kinetics of apoA-I, if combined with infusion of a tracer, analysis of lymph could also expand the modeling of endogenous apolipoprotein kinetics.  相似文献   

12.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has gained attention as a key regulator of serum low density lipoprotein cholesterol (LDL-C) levels. This novel protease causes the degradation of hepatic low density lipoprotein receptors. In humans, gain-of-function mutations in PCSK9 cause a form of familial hypercholesterolemia, whereas loss-of-function mutations result in significantly decreased LDL-C levels and cardiovascular risk. Previous studies have demonstrated that statins upregulate PCSK9 mRNA expression in cultured cells and animal models. In light of these observations, we studied the effect of atorvastatin on circulating PCSK9 protein levels in humans using a sandwich ELISA to quantitate serum PCSK9 levels in patients treated with atorvastatin or placebo for 16 weeks. We observed that atorvastatin (40 mg/day) significantly increased circulating PCSK9 levels by 34% compared with baseline and placebo and decreased LDL-C levels by 42%. These results suggest that the addition of a PCSK9 inhibitor to statin therapy may result in even further LDL-C decreases.  相似文献   

13.
Plasma lipoprotein levels are predictors of risk for coronary artery disease. Lipoprotein structure-function relationships provide important clues that help identify the role of lipoproteins in cardiovascular disease. The compositional and conformational heterogeneity of lipoproteins are major barriers to the identification of their structures, as discovered using traditional approaches. Although electron microscopy (EM) is an alternative approach, conventional negative staining (NS) produces rouleau artifacts. In a previous study of apolipoprotein (apo)E4-containing reconstituted HDL (rHDL) particles, we optimized the NS method in a way that eliminated rouleaux. Here we report that phosphotungstic acid at high buffer salt concentrations plays a key role in rouleau formation. We also validate our protocol for analyzing the major plasma lipoprotein classes HDL, LDL, IDL, and VLDL, as well as homogeneously prepared apoA-I-containing rHDL. High-contrast EM images revealed morphology and detailed structures of lipoproteins, especially apoA-I-containing rHDL, that are amenable to three-dimensional reconstruction by single-particle analysis and electron tomography.  相似文献   

14.
Apolipoprotein C-III (apoC-III) is an important regulator of lipoprotein metabolism. Radioisotope and stable isotope kinetic studies show differing results in relation to the kinetics of apoC-III in HDL. Kinetic analysis of HDL apoC-III may be difficult because of its low concentration, as well as the presence of other apoproteins at higher concentration, in the HDL fraction. We used Intralipid(R) (IL), known to preferentially extract apoC proteins from plasma, as a means of extracting apoC-III from HDL before apoprotein separation by isoelectric focusing gel electrophoresis for the measurement of tracer enrichment. Protein purity was assessed by an isoleucine-to-leucine (Ile/Leu) ratio, as apoC-III contains no isoleucine. We compared apoC-III kinetics in 14 men using a bolus infusion of deuterated leucine. The Ile/Leu ratio for IL-extracted HDL (IL-HDL) apoC-III (3.0 +/- 0.7%) was not different from that of VLDL apoC-III (2.6 +/- 0.6%) but was significantly lower than that of untreated HDL apoC-III (9.0 +/- 2.9%) (P < 0.001). The isotopic enrichment curves and fractional catabolic rates (FCRs) for IL-HDL apoC-III were not different from those of VLDL apoC-III. In contrast, HDL apoC-III had significantly lower isotopic enrichments and FCRs than IL-HDL apoC-III (P < 0.001). In conclusion, this simple IL method can be used to isolate apoC-III from HDL with minimal interference from other HDL apoproteins, and it demonstrates that the kinetics of apoC-III in VLDL and HDL are similar, supporting the concept of a single kinetically homogeneous pool of apoC-III in plasma.  相似文献   

15.
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.  相似文献   

16.
In this work, we investigated the impact of testosterone deficiency and cholesteryl ester transfer protein (CETP) expression on lipoprotein metabolism and diet-induced atherosclerosis. CETP transgenic mice and nontransgenic (nTg) littermates were studied 4 weeks after bilateral orchidectomy or sham operation. Castrated mice had an increase in the LDL fraction (+36% for CETP and +79% for nTg mice), whereas the HDL fraction was reduced (-30% for CETP and -11% for nTg mice). Castrated mice presented 1.7-fold higher titers of anti-oxidized LDL (Ox-LDL) antibodies than sham-operated controls. Plasma levels of CETP, lipoprotein lipase, and hepatic lipase were not changed by castration. Kinetic studies showed no differences in VLDL secretion rate, VLDL-LDL conversion rate, or number of LDL and HDL receptors. Competition experiments showed lower affinity of LDL from castrated mice for tissue receptors. Diet-induced atherosclerosis studies showed that testosterone deficiency increased by 100%, and CETP expression reduced by 44%, the size of aortic lesion area in castrated mice. In summary, testosterone deficiency increased plasma levels of apolipoprotein B-containing lipoproteins (apoB-LPs) and anti-OxLDL antibodies, decreased LDL receptor affinity, and doubled the size of diet-induced atherosclerotic lesions. The expression of CETP led to a milder increase of apoB-LPs and reduced atherosclerotic lesion size in testosterone-deficient mice.  相似文献   

17.
Plasma lipoproteins contain variable amounts of lipid oxidation products (LOP), which are known to impair normal physiological functions and stimulate atherosclerotic processes. Recent evidence indicates that plasma lipoproteins are active carriers of LOP, low-density lipoprotein (LDL) directing transport toward peripheral tissues, and high-density lipoprotein (HDL) being active in the reverse transport. It has been proposed that the lipoprotein-specific transport of LOP could play a role in atherosclerosis-related effects of LDL and HDL. This article gives an overview of the present knowledge of lipoprotein LOP transport and its association with the risk of atherosclerosis and cardiovascular diseases (CVD). Evidence of the significance of lipoprotein LOP transport comes mainly from studies of physiological oxidative stress and is supported by studies of the functionality apolipoprotein A-1 mimetic peptides. A large body of data has accumulated indicating that lipoprotein LOP transport is connected to the risk of atherosclerosis. While high levels of LOP carried by LDL are indicative of elevated risk, high LOP level in HDL appears to associate with protection. If confirmed, the proposed lipoprotein LOP transport function would affect conception of the etiology of atherosclerosis, but would not conflict current views of the pathophysiological mechanisms. It could open new perspectives, such as the dietary origin of LOP, and the protective function of HDL in clearance of LOP. Focusing on LOP could give additional tools especially for prevention and diagnosis, but would not radically change the management of atherosclerosis and CVD.  相似文献   

18.
To identify additional loci that influence lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) mapping in offspring of PERA/EiJxI/LnJ and PERA/EiJxDBA/2J intercrosses and in a combined data set from both crosses after 8 weeks of consumption of a high fat-diet. Most QTLs identified were concordant with homologous chromosomal regions that were associated with lipoprotein levels in human studies. We detected significant new loci for HDL cholesterol levels on chromosome (Chr) 5 (Hdlq34) and for non-HDL cholesterol levels on Chrs 15 (Nhdlq9) and 16 (Nhdlq10). In addition, the analysis of combined data sets identified a QTL for HDL cholesterol on Chr 17 that was shared between both crosses; lower HDL cholesterol levels were conferred by strain PERA. This QTL colocalized with a shared QTL for cholesterol gallstone formation detected in the same crosses. Haplotype analysis narrowed this QTL, and sequencing of the candidate genes Abcg5 and Abcg8 confirmed shared alleles in strains I/LnJ and DBA/2J that differed from the alleles in strain PERA/EiJ. In conclusion, our analysis furthers the knowledge of genetic determinants of lipoprotein cholesterol levels in inbred mice and substantiates the hypothesis that polymorphisms of Abcg5/Abcg8 contribute to individual variation in both plasma HDL cholesterol levels and susceptibility to cholesterol gallstone formation.  相似文献   

19.
High-density lipoprotein (HDL) incubated with low-density lipoprotein (LDL) under oxidising conditions has previously been reported to decrease the accumulation of lipid peroxides on LDL and to diminish the biological effects of LDL, which would have been present had it been oxidatively modified in the absence of HDL. Thus far direct evidence that oxidative modification of LDL is diminished by HDL has, however, been lacking. We used electrospray ionisation mass spectrometry (ESI-MS) to detect 4-hydroxy-2-nonenal (HNE)-modified histidine residues of tryptic fragments of LDL which had been subject to Cu(2+) induced oxidation both in the presence and absence of human or avian HDL. HNE-modified angiotensin II was introduced into the incubation mixture as an internal standard and to check that HDL did not interfere in the detection of HNE-modified peptides non-specifically. Our results confirmed earlier reports that HNE modification of histidine occurs during the oxidation of LDL and for the first time revealed a marked attenuation of the process in the presence of human HDL with no effect on the detection of HNE-modified angiotensin II by ESI-MS. Avian HDL, which lacks the anti-oxidative enzyme paraoxonase, did not affect the formation of apo B adducts. Our findings therefore suggest that covalent linkage of lipid peroxidation products to LDL protein as well as the accumulation of lipid peroxides on LDL is diminished in the presence of HDL containing paraoxonase.  相似文献   

20.
To elucidate the separate contributions of the lipolytic versus ligand-binding functions of hepatic lipase (HL) to lipoprotein metabolism and atherosclerosis, and to investigate the role of the low density lipoprotein receptor (LDLr) in these processes, we compared mice expressing catalytically active HL (HL-WT) with mice expressing inactive HL (HL-S145G) in a background lacking endogenous HL and the LDLr (LDLr-KOxHL-KO). HL-WT and HL-S145G reduced (P < 0.05 for all) cholesterol (55% vs. 20%), non-HDL-cholesterol (63% vs. 22%), and apolipoprotein B (apoB; 34% vs. 16%) by enhancing the catabolism of autologous (125)I-apoB-intermediate density lipoprotein (IDL)/LDL (fractional catabolic rate in day(-1): 6.07 +/- 0.25, LDLr-KOxHL-WT; 4.76 +/- 0.30, LDLr-KOxHL-S145G; 3.70 +/- 0.13, LDLr-KOxHL-KO); HL-WT had a greater impact on the concentration, composition, particle size, and catabolism of apoB-containing lipoproteins (apoB-Lps) and HDL. Importantly, consistent with the changes in apoB-Lps, atherosclerosis in LDLr-KOxHL-KO mice fed a regular chow diet (RCD) was reduced by both HL-WT and HL-S145G (by 71% and 51% in cross-sectional analysis, and by 85% and 67% in en face analysis; P < 0.05 for all). These data identify physiologically relevant but distinct roles for the lipolytic versus ligand-binding functions of HL in apoB-Lp metabolism and atherosclerosis and demonstrate that their differential effects on these processes are mediated by changes in catabolism via non-LDLr pathways. These changes, evident even in the presence of apoE, establish an antiatherogenic role of the ligand-binding function of HL in LDLr-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号