首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objective

Genistein is a soy isoflavone that has antitumor activity both in vitro and in vivo. It has been shown that genistein inhibits many type of cancers including prostate cancer (PCa) by regulating several cell signaling pathways and microRNAs (miRNAs). Recent studies suggest that the long non-coding RNAs (lncRNAs) are also involved in many cellular processes. At present there are no reports about the relationship between gensitein, miRNAs and lncRNAs. In this study, we focused on miRNAs, lncRNA that are regulated by genistein and investigated their functional role in PCa.

Method

Microarray (SurePrint G3 Human GE 8×60K) was used for expression profiling of genistein treated and control PCa cells (PC3 and DU145). Functional assay (cell proliferation, migration, invasion, apoptosis and cell cycle assays) were performed with the PCa cell lines, PC3 and DU145. Both in vitro and in vivo (nude mouse) models were used for growth assays. Luciferase reporter assays were used for binding of miR-34a to HOTAIR.

Results

LncRNA profiling showed that HOTAIR was highly regulated by genistein and its expression was higher in castration-resistant PCa cell lines than in normal prostate cells. Knockdown (siRNA) of HOTAIR decreased PCa cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. miR-34a was also up-regulated by genistein and may directly target HOTAIR in both PC3 and DU145 PCa cells.

Conclusions

Our results indicated that genistein inhibited PCa cell growth through down-regulation of oncogenic HOTAIR that is also targeted by tumor suppressor miR-34a. These findings enhance understanding of how genistein regulates lncRNA HOTAIR and miR-34a in PCa.  相似文献   

3.
4.
Molecular targets in prostate cancer are continually being explored, for which there are currently few therapeutic options. Rapamycin (RPM) is an antifungal macrolide antibiotic isolated from Streptomyces hygroscopicus which can inhibit the G1 to S transition. URGCP (upregulator of cell proliferation) is a novel gene located on chromosome 7p13. We aimed to investigate the role of URGCP gene expression changes in PC3, DU145, and LNCAP cell lines with/out RPM. Average cell viability and cytotoxic effect of rapamycin were investigated at 24?h intervals for three days by using Trypan blue dye exclusion test and XTT assay. Cytotoxic effects of rapamycin in DU145, PC3 and LNCAP cells were detected in time and dose dependent manner with the IC50 doses within the range of 1–100?nM. As the results were evaluated, IC50 doses in the DU145, PC3, and LNCaP cells were detected as 10, 25, and 50?nM, respectively. The mean relative ratios of URGCP gene expression in DU145, LNCAP and PC3 cells were found as ?1.48, 6.59 and ?13.00, respectively, when compared to rapamycin-free cells. The False Discovery Rate adjusted p value in DU145, LNCAP and PC3 were 1.25?×?10?5, 2.20?×?10?8 and 6.20?×?10?9, respectively. When the URGCP gene expression level is compared between the dose and control group, we found that URGCP gene expression was significantly decreased in dose groups of DU145 and PC3 cells.  相似文献   

5.
6.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   

7.
A lesion-mimic phenotype in rice (Oryza sativa L.) spotted leaf 5 (spl5) indicates that wild-type SPL5 negatively regulates cell death and resistance responses. Previously, the spl5 gene was already mapped to the 80-kb region between two markers SSR7 and RM7121 through a map-based cloning approach. Here, we further showed that the spl5 gene was delimitated into a 15.1-kb genomic region by the high-resolution sequence target site (STS) markers. Subsequent sequencing in this region of spl5 mutant revealed that one candidate gene harbored a single-base deletion, resulting in a frame-shift mutation and a premature stop codon. Bioinformatic analysis showed that SPL5 gene encodes a putative splicing factor 3b subunit 3 (SF3b3) and might be involved in splicing reactions of pre-mature RNAs participating in the regulation of cell death and resistance responses. Further analysis showed that wild-type SPL5 did functionally complement the spl5 phenotype. The data presented here clearly indicate that the SPL5 negatively regulates cell death and resistance responses via modulating RNA splicing in plants.  相似文献   

8.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   

9.
10.
We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.  相似文献   

11.
12.
The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.  相似文献   

13.
Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.  相似文献   

14.
15.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145.  相似文献   

16.
Nucleic acid–sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid–inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.  相似文献   

17.
24-Hydroxylase (CYP24) activity modulates in vitro and in vivo calcitriol metabolism and biologic effects. We have investigated, in human PC3, DU145 and LNCaP prostate cancer cell lines, the relationship of CYP24 single nucleotide polymorphisms (SNPs) and splicing and the variable patterns of baseline and calcitriol-inducible CYP24 activity. DU145 cells exhibit baseline CYP24 activity that is further induced by calcitriol. Baseline and inducible CYP24 activity were barely detectable in LNCaP cells. In PC3, baseline CYP24 activity was undetectable but induced by calcitriol. A different pattern of SNPs was identified at positions 24, 46, 146 and 198 in the intron between exons 9 and 10 of CYP24 gene in each cancer cell line. DU145 displayed baseline CYP24 splicing between exon 9 and exon 11; splicing was only observed in calcitriol treated LNCaP cells. Untreated PC3 had a mixed picture (splicing and no splicing); only the spliced form was seen after calcitriol treatment. These results demonstrate that calcitriol treatment modulates CYP24 splicing, and suggests that differences in CYP24 splicing are associated with different patterns of CYP24 activity.  相似文献   

18.
19.
Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.Alternative pre-mRNA splicing is a mechanism for generating multiple mRNA isoforms from a single gene. This process can allow a gene to encode for more than one protein isoform. For some genes, it is a mechanism for regulating message stability through production of alternative mRNA isoforms that are substrates for the nonsense-mediated mRNA decay pathway (1). The majority of human genes undergo alternative splicing (2), and the process can be regulated in tissue-specific and developmental stage-specific manners. Current models propose that cis elements on the pre-mRNA, in exons and introns, serve as recognition sites for trans-acting protein factors that bind to the pre-mRNA and regulate assembly of the splicing machinery, thus regulating splice site choice (3).In recent years, a number of groups have employed bioinformatics techniques to identify cis splicing regulatory elements (4). These techniques include using multiple interspecies sequence alignments to identify conserved intronic regions, identification of short sequences in exons that are bounded by weak consensus splice sites, and identification of common intronic sequences flanking similarly regulated alternative exons (59). These efforts have added many new sequences to the list of known and potential splicing regulators. The identification of the protein factor partners for these sequences will be important for understanding their function in alternative splicing regulation.Experimental approaches have identified alternative splicing factors that interact with specific cis elements (10), but the number of trans factors discovered still lags behind the number of newly identified cis element partners. Some examples of well-characterized cis element/trans-acting factor interactions include the NOVA K homology domain splicing factor binding to the sequence UCAY (11), the FOX splicing factors binding to the sequence UGCAUG (1214), and hnRNP3 F/H proteins binding to the sequence GGGG (15, 16). By using cross-linking immunoprecipitation followed by large scale sequencing, entire catalogs of RNAs that the splicing factors NOVA, SF2/ASF, and FOX2 bind to in vivo have been determined (1719). These approaches have led to models for how the proteins binding to their cis regulatory elements may alter splicing. These models include a role for the relative position of a cis element to an alternative cassette exon in determining alternative exon inclusion or skipping (18, 19).In a previous bioinformatics analysis of evolutionarily conserved intronic sequences flanking alternatively spliced exons, we identified the hexamer sequence UCUAUC as a novel splicing regulatory element (8). UCUAUC is found flanking both sides of alternative exon 16 of the unc-52 gene of Caenorhabditis elegans. Genetic analysis of a class of viable unc-52 mutants led to the discovery that exons 16–18 are alternative cassette exons and that every combination of skipping and inclusion of these three exons occurs (20). This splicing is regulated by the alternative splicing factor MEC-8 (21). Fig. 1A shows a schematic diagram of the alternatively spliced region of unc-52, with the MEC-8-enhanced alternative splicing events indicated. Using an unc-52 splicing reporter trans gene containing alternative exons 15–19, we previously reported that alternative splicing is regulated by the intronic motif UCUAUC in the intron downstream of exon 16 (8). In addition we showed that this element works cooperatively with a UGCAUG hexamer (the consensus FOX-1-binding site) in the upstream intron to regulate alternative splicing (8).Open in a separate windowFIGURE 1.RNA affinity chromatography identifies HRP-2 as binding to UCUAUC elements. A, schematic representation of the alternatively spliced region of unc-52 (adapted from Ref. 21). The alternative splicing events promoted by MEC-8 are indicated by bold lines. The lines next to introns 15 and 16 are the sites of the UCUAUC elements in those introns whose sequences were used in the RNA affinity chromatography. B, table showing sequences of RNAs immobilized to beads in the RNA affinity chromatography experiment. C, Coomassie-stained SDS-PAGE analysis of RNA affinity chromatography. C. elegans embryo extract was incubated with the different immobilized RNA substrates listed on top of the gel. Proteins identified by mass spectrometry are listed to the right of the gel, with arrows pointing to coincident protein bands. D, the left panel shows the silver stain result for the RNA affinity chromatography experiment. Each lane represents a different immobilized substrate, as indicated above. The band corresponding to HRP-2 is indicated by an arrow. The right panel is an immunoblot of the same gel using anti-HRP-2 polyclonal antibody. E, anti-HRP-2 immunoblot of an RNA affinity chromatography experiment for the indicated substrates.In this study, we report the results of a biochemical identification of a protein factor from C. elegans that binds to the UCUAUC intronic splicing regulatory element. We transcribed different short RNA sequences containing the UCUAUC element in its native intronic context, or as part of a repeating unit, and immobilized these onto agarose beads. After passing embryo extracts across these beads, we found that the protein HRP-2, the C. elegans homolog of the mammalian hnRNP Q/R proteins, binds to this sequence with high affinity. By using RNAi to reduce the level of HRP-2 in worms, we observed changes in alternative splicing of unc-52 and lin-10, two genes that contain UCUAUC elements in introns flanking alternative exons. We propose that HRP-2 is an alternative splicing factor that works through the UCUAUC intronic elements to regulate alternative splicing.  相似文献   

20.
Lung cancer is the leading cause of cancer-related death worldwide. Aberrant splicing has been implicated in lung tumorigenesis. However, the functional links between splicing regulation and lung cancer are not well understood. Here we identify the RNA-binding protein QKI as a key regulator of alternative splicing in lung cancer. We show that QKI is frequently down-regulated in lung cancer, and its down-regulation is significantly associated with a poorer prognosis. QKI-5 inhibits the proliferation and transformation of lung cancer cells both in vitro and in vivo. Our results demonstrate that QKI-5 regulates the alternative splicing of NUMB via binding to two RNA elements in its pre-mRNA, which in turn suppresses cell proliferation and prevents the activation of the Notch signaling pathway. We further show that QKI-5 inhibits splicing by selectively competing with a core splicing factor SF1 for binding to the branchpoint sequence. Taken together, our data reveal QKI as a critical regulator of splicing in lung cancer and suggest a novel tumor suppression mechanism involving QKI-mediated regulation of the Notch signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号