首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper. For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover. Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover. The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol-protein complexes.  相似文献   

4.
Objective: Recent studies have shown that free fatty acid (FFA) release is pulsatile and that this pattern is controlled by the sympathetic nervous system. It is, then, necessary to understand and characterize adipose tissue lipolysis to elucidate its effect on metabolism. In this study, we introduce deconvolution as a method to detect and quantify pulsatile FFA release. Research Methods and Procedures: Octanoate, a medium‐chain fatty acid, was infused in male mongrel dogs (n = 7) to mimic the pulsatile appearance of plasma FFAs. Deconvolution analysis was used to reconstruct the number and timing of infused octanoate pulses from plasma FFA concentrations. Results: Deconvolution analysis was able to reconstruct the exogenously infused pulses of octanoate used to mimic pulsatile appearance of FFAs (pulse frequency, 8 per hour; interpulse interval, 7 minutes). However, determination of pulse mass was less accurate (1.0 ± 0.0 vs. 0.54 ± 0.1 mM). The addition of varying levels of Gaussian noise to non‐oscillatory FFA time series did not lead to detection of extraneous FFA pulses. However, goodness of fit declined with increasing variability. Discussion: These results support the use of deconvolution as an accurate approach to determine the temporal sequence of endogenous FFA release.  相似文献   

5.
6.
Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.  相似文献   

7.
The effect of Vespa amino acid mixture (VAAM) on the release of lipolytic products was examined in isolated rat adipocytes. Concentrations of 112.5 to 225 ppm of VAAM showed significantly greater release of non-esterified fatty acids (NEFA) and glycerol than the same concentrations of casein amino acid mixture (CAAM). The integrated relative release of NEFA and glycerol was lower in response to individual administration of amino acids comprising VAAM than to VAAM itself. Further, amino acids mixtures deficient in a single amino acid comprising VAAM showed significantly lower release of lipolytic products than VAAM. These data suggest that the synergistic effect of VAAM on the release of lipolytic products is a function of concurrent exposure to the unique composition of amino acids found in VAAM as compared to the effect of exposure to the same individual un-mixed amino acids or to a mixture lacking one of the amino acids comprising VAAM.  相似文献   

8.
9.
10.
Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double‐bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.  相似文献   

11.
Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.  相似文献   

12.
13.
14.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   

15.
The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an approximately 25% reduction in basal (3)H-labeled fatty acid uptake and a complete loss of insulin-stimulated (3)H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.  相似文献   

16.
17.
The hydrolysis of steryl esters on thin-layer chromatographic plates by porcine pancreatic lipase is described. The sterols and fatty acids produced were separated on the same plate, recovered, and analysed by gas-liquid chromatography for their compositions. Synthetic cholesteryl esters containing various saturated and unsaturated fatty acids and synthetic steryl oleates with various sterols were lipolysed along with steryl esters of Acanthus ilicifolius, Bruguiera gymnorhiza and Rhizophora mucronata mangrove leaves. The major sterol was sitosterol which was accompanied by cholesterol, campesterol, stigmasterol and 28-isofucosterol. In addition, stigmast-7-en-3β-ol was present in R. mucronata leaves. The component fatty acids found in all three species were 16:0, 18:0, 18:1, 18:2 and 18:3. The relative proportions of the sterols and fatty acids were significantly different from the chemotaxonomic standpoint. The results obtained by carrying out plate lipolysis for 45 min at 40° compared well with those produced by conventional chemical hydrolysis.  相似文献   

18.
19.
Vascular endothelium is the dynamic interface in transport of lipid from blood to myocytes in heart and arteries. The luminal surface of endothelium is the site of action of lipoprotein lipase on chylomicrons and VLDL and the site of uptake of fatty acids from albumin. Fatty acids and monoacylglycerols are transported from the lumen in an interfacial continuum of endothelial and myocyte membranes. Lipoprotein lipase is transferred from myocytes to the vascular lumen, and is anchored there, by proteoheparan sulfate in cell membranes. Insulin, needed for synthesis of lipoprotein lipase and esterfication of fatty acids, is captured from the blood stream and delivered to myocytes by endothelial insulin receptors. Fatty acids, monoacylglycerols, lipoprotein lipase and insulin are transported along the same route, but by different mechanisms. The route involves the plasma membrane of endothelium and myocytes, the membrane lining transendothelial channels, and intercellular contacts. (Mol Cell Biochem116: 181–191, 1992)  相似文献   

20.
Recognition of the strength of nonhuman primate models in investigating metabolic disorders has resulted in an expanded need for in vivo research techniques. We studied adipose metabolism in 10 baboons (13.0 ± 4.2 years old, 29.5 ± 5.5 kg). Part 1 evaluated the effect of different sedatives on the rate of appearance of plasma free fatty acids (RaFFA), assessed using 13C4-labeled palmitate infusion (7 µmol/kg/min). Animals, were studied with no sedation, with complete isoflurane sedation, and with minimal midazolam infusion (0.04 mg/kg/h), with the last scheme allowing for the most consistent values and animals that were visually more calm. In Part 2, RaFFA and RaGlycerol (D5-glycerol, 5 mg/kg lean body mass/h) were measured. From midnight to 0300, flux fell and came to a steady state between 0500 and 0700 h (RaFFA, 39.4 ± 29.8 μmol/kg fat mass/min; and RaGlycerol, 26.9 ± 7.3 μmol/kg/min). The RaFFA-to-RaGlycerol ratio was 1.5 ± 0.8 (49% reesterification). The decline in turnover throughout the night reflects natural circadian processes and was mirrored by reductions in FFA and glycerol to 0.62 and ± 0.14 and 0.16 and ± 0.03 mmol/l, respectively. The concurrent changes in both FFA and glycerol kinetics indicate physiologic validity of the method. These techniques will support needed research to determine mechanisms by which treatments act upon the adipocyte in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号