首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multiple transmembrane protein Niemann-Pick C1 like1 (NPC1L1) is essential for intestinal cholesterol absorption. Ezetimibe binds to NPC1L1 and is a clinically used cholesterol absorption inhibitor. Recent studies in cultured cells have shown that NPC1L1 mediates cholesterol uptake through vesicular endocytosis that can be blocked by ezetimibe. However, how NPC1L1 and ezetimibe work in the small intestine is unknown. In this study, we found that NPC1L1 distributed in enterocytes of villi and transit-amplifying cells of crypts. Acyl-CoA cholesterol acyltransferase 2 (ACAT2), another important protein for cholesterol absorption by providing cholesteryl esters to chylomicrons, was mainly presented in the apical cytoplasm of enterocytes. NPC1L1 and ACAT2 were highly expressed in jejunum and ileum. ACAT1 presented in the Paneth cells of crypts and mesenchymal cells of villi. In the absence of cholesterol, NPC1L1 was localized on the brush border of enterocytes. Dietary cholesterol induced the internalization of NPC1L1 to the subapical layer beneath the brush border and became partially colocalized with the endosome marker Rab11. Ezetimibe blocked the internalization of NPC1L1 and cholesterol and caused their retention in the plasma membrane. This study demonstrates that NPC1L1 mediates cholesterol entering enterocytes through vesicular endocytosis and that ezetimibe blocks this step in vivo.  相似文献   

2.
3.
4.
5.
6.
Niemann-Pick C1-like 1 protein (NPC1L1), a transporter crucial in intestinal cholesterol absorption, is expressed in human liver but not in murine liver. To elucidate the role of hepatic NPC1L1 on lipid metabolism, we overexpressed NPC1L1 in murine liver utilizing adenovirus-mediated gene transfer. C57BL/6 mice, fed on normal chow with or without ezetimibe, were injected with NPC1L1 adenovirus (L1-mice) or control virus (Null-mice), and lipid analyses were performed five days after the injection. The plasma cholesterol levels increased in L1-mice, and FPLC analyses revealed increased cholesterol contents in large HDL lipoprotein fractions. These fractions, which showed α-mobility on agarose electrophoresis, were rich in apoE and free cholesterol. These lipoprotein changes were partially inhibited by ezetimibe treatment and were not observed in apoE-deficient mice. In addition, plasma and VLDL triglyceride (TG) levels decreased in L1-mice. The expression of microsomal triglyceride transfer protein (MTP) was markedly decreased in L1-mice, accompanied by the reduced protein levels of forkhead box protein O1 (FoxO1). These changes were not observed in mice with increased hepatic de novo cholesterol synthesis. These data demonstrate that cholesterol absorbed through NPC1L1 plays a distinct role in cellular and plasma lipid metabolism, such as the appearance of apoE-rich lipoproteins and the diminished VLDL-TG secretion.  相似文献   

7.
The Niemann-Pick C1 Like 1 (NPC1L1) is a predicted polytopic membrane protein that is critical for cholesterol absorption. NPC1L1 takes up free cholesterol into cells through vesicular endocytosis. Ezetimibe, a clinically used cholesterol absorption inhibitor, blocks the endocytosis of NPC1L1 thereby inhibiting cholesterol uptake. Human NPC1L1 is a 1,332-amino acid protein with a putative sterol-sensing domain (SSD) that shows sequence homo­logy to HMG-CoA reductase (HMGCR), Niemann-Pick C1 (NPC1), and SREBP cleavage-activating protein (SCAP). Here, we use protease protection and immunofluorescence in selectively permeabilized cells to study the topology of human NPC1L1. Our data indicate that NPC1L1 contains 13 transmembrane helices. The NH2-terminus of NPC1L1 is in the lumen while the COOH-terminus projects to the cytosol. human NPC1L1 contains seven small cytoplasmic loops—four small and three large luminal loops—one of which has been reported to bind ezetimibe. Ezetimibe-glucuronide, the major metabolite of ezetimibe in vivo, can block the internalization of NPC1L1 and cholesterol. The membrane topology of NPC1L1 is similar to that of NPC1, and the putative SSD of NPC1L1 is oriented in the same manner as those of HMGCR, NPC1, and SCAP. The defined topology of NPC1L1 provides necessary information for further dissecting the functions of the different domains of NPC1L1.  相似文献   

8.
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation.  相似文献   

9.
To address the effect of the n-3 fatty acid, docosahexaenoic acid (22:6), on proteins that play a role in cholesterol absorption, CaCo-2 cells were incubated with taurocholate micelles alone or micelles containing 22:6 or oleic acid (18:1). Compared with controls or 18:1, 22:6 did not interfere with the cellular uptake of micellar cholesterol. Apical cholesterol efflux was enhanced in cells incubated with 22:6. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was decreased by 22:6. 22:6 decreased Niemann-Pick C1-Like 1 (NPC1L1) protein and mRNA levels without altering gene or protein expression of ACAT2, annexin-2, caveolin-1, or ABCG8. Peroxisome proliferator-activated receptor delta (PPARdelta) activation decreased NPC1L1 mRNA levels and cholesterol trafficking to the endoplasmic reticulum, suggesting that 22:6 may act through PPARdelta. Compared with hamsters fed a control diet or olive oil (enriched 18:1), NPC1L1 mRNA levels were decreased in duodenum and jejunum of hamsters ingesting fish oil (enriched 22:6). In an intestinal cell, independent of changes in ABCG8 expression, 22:6 increases the apical efflux of cholesterol. 22:6 interferes with cholesterol trafficking to the endoplasmic reticulum by the suppression of NPC1L1, perhaps through the activation of PPARdelta. Moreover, a diet enriched in n-3 fatty acids decreases the gene expression of NPC1L1 in duodenum and jejunum of hamster.  相似文献   

10.
Membrane microdomains rich in cholesterol and sphingolipids, including gangliosides (GGs), are known to be important regions for cell signaling and binding sites for various pathogens. Cholesterol depletion inhibits the cellular entry of pathogens and also reduces inflammatory signals by disrupting microdomain structure. Our previous study showed that dietary gangliosides increased total ganglioside incorporation while decreasing cholesterol in the intestinal mucosa. We hypothesized that diet-induced reduction in cholesterol content in the intestinal mucosa disrupts microdomain structure resulting in reduced pro-inflammatory signals. Male weanling Sprague-Dawley rats were fed semipurified diets for 2 weeks. Experimental diets were formulated to include either ganglioside-enriched lipid (GG diet, 0.02% gangliosides [w/w of diet] ) or polyunsaturated fatty acid (PUFA diet, 1% arachidonic acid and 0.5% docosahexaenoic acid, w/w of total fat), in a control diet containing 20% fat. Levels of cholesterol, GG, caveolin, platelet activating factor (PAF), and diglyceride (DG) were measured in the microdomain isolated from the intestinal brush border. The GG diet increased total gangliosides by 50% with a relative increase in GD3 and a relative decrease in GM3. Cholesterol content was also reduced by 23% in the intestinal microdomain. These changes resulted in a significant decrease in the ratio of cholesterol to ganglioside. The GG diet and the PUFA diet were both associated with reduction in caveolin, PAF, and DG content in microdomains, whereas no change occurred in the ganglioside profile of animals fed the PUFA diet. Dietary gangliosides decrease the cholesterol/ganglioside ratio, caveolin, PAF and DG content in microdomains thus exerting a potential anti-inflammatory effect during gut development.  相似文献   

11.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.  相似文献   

12.
13.
Niemann-Pick C1-like 1 (NPC1L1) is a recently identified protein that mediates intestinal cholesterol absorption and regulates biliary cholesterol excretion. The itineraries and kinetics of NPC1L1 trafficking remain uncertain. In this study, we have visualized movement of NPC1L1-enhanced green fluorescent protein (NPC1L1-EGFP) and cholesterol analogs in hepatoma cells. At steady state, about 42% of NPC1L1 resided in the transferrin (Tf)-positive, sterol-enriched endocytic recycling compartment (ERC), whereas time-lapse microscopy demonstrated NPC1L1 traffic between the plasma membrane and the ERC. Fluorescence recovery after photobleaching revealed rapid recovery (half-time approximately 2.5 min) of about 35% of NPC1L1 in the ERC, probably replenished from peripheral sorting endosomes. Acute cholesterol depletion blocked internalization of NPC1L1-EGFP and Tf and stimulated recycling of NPC1L1-EGFP from the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells, NPC1L1 resided almost exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between the cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1-mediated cellular sterol uptake.  相似文献   

14.
NPC1L1 and cholesterol transport   总被引:1,自引:0,他引:1  
Jenna L. Betters 《FEBS letters》2010,584(13):2740-13359
The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, and fatty liver, in addition to atherosclerosis.  相似文献   

15.
Mice lacking Niemann-Pick C1-Like 1 (NPC1L1) (NPC1L1(-/-)mice) exhibit a defect in intestinal absorption of cholesterol and phytosterols. However, wild-type (WT) mice do not efficiently absorb and accumulate phytosterols either. Cell-based studies show that NPC1L1 is a much weaker transporter for phytosterols than cholesterol. In this study, we examined the role of NPC1L1 in phytosterol and cholesterol trafficking in mice lacking ATP-binding cassette (ABC) transporters G5 and G8 (G5/G8(-/-) mice). G5/G8(-/-) mice develop sitosterolemia, a genetic disorder characterized by the accumulation of phytosterols in blood and tissues. We found that mice lacking ABCG5/G8 and NPC1L1 [triple knockout (TKO) mice] did not accumulate phytosterols in plasma and the liver. TKO mice, like G5/G8(-/-) mice, still had a defect in hepatobiliary cholesterol secretion, which was consistent with TKO versus NPC1L1(-/-) mice exhibiting a 52% reduction in fecal cholesterol excretion. Because fractional cholesterol absorption was reduced similarly in NPC1L1(-/-) and TKO mice, by subtracting fecal cholesterol excretion in TKO mice from NPC1L1(-/-) mice, we estimated that a 25g NPC1L1(-/-) mouse may secrete about 4 mumol of cholesterol daily via the G5/G8 pathway. In conclusion, NPC1L1 is essential for phytosterols to enter the body in mice.  相似文献   

16.
胆固醇是生命活动必不可少的脂类物质,但当体内胆固醇水平过高时,就会引起高胆固醇血症,进而导致动脉粥样硬化、脑中风和冠心病。人体内胆固醇有两种来源:以乙酰辅酶A为原料从头合成,或者通过小肠从食物中吸收。现今,过量的胆固醇摄取是引起高胆固醇血症的重要原因。胆固醇在小肠中的吸收是一个复杂的、由多个步骤组成的连续的分解、转运以及重新酯化的过程。其中由Niemann-Pick C1 Like 1(NPC1L1)蛋白介导肠道中胆固醇进入吸收细胞,是胆固醇吸收的限速步骤。本文重点总结了小肠胆固醇吸收的分子途径、调控机制、医药研发现状及与low-density lipoprotein receptor(LDLR)内吞过程的比较。  相似文献   

17.
18.
Molecular associations between sphingomyelin and cholesterol provide a molecular basis for the colocalization of these lipids in plasma membrane microdomains (lipid rafts) and for the inhibitory effect of sphingomyelin on the intestinal absorption of cholesterol. Using surface pressure measurements at the air-water interface, we showed that sphingosine, the common sphingoid backbone of most sphingolipids, formed condensed lipid complexes with cholesterol. Structure-activity relationship studies with long-chain analogs of sphingosine, together with molecular mechanics simulations, were consistent with a specific interaction between sphingosine and the alpha face of cholesterol. The uptake of micellar cholesterol and the effect of sphingosine on cholesterol absorption were studied with two human model intestinal epithelial cell lines, Caco-2 and HT-29-D4. Real-time PCR quantifications of the putative cholesterol transporter Niemann-Pick C1 like 1 (NPC1L1) mRNA revealed that, in these cell lines, the activity of cholesterol transport correlated with the level of NPC1L1 expression. In both cell lines, sphingosine induced a dose-dependent decrease of cholesterol absorption. Yet the effect of sphingosine was more dramatic in Caco-2 cells, which also displayed the highest expression of NPC1L1 mRNA. Altogether, these data suggested that sphingosine interacts specifically with cholesterol and inhibits the intestinal NPC1L1-dependent transport of micellar cholesterol.  相似文献   

19.
The process of cholesterol absorption has yet to be completely defined at the molecular level. Because of its ability to esterify cholesterol for packaging into nascent chylomicrons, ACAT2 plays an important role in cholesterol absorption. However, it has been found that cholesterol absorption is not completely inhibited in ACAT2-deficient (ACAT2 KO) mice. Because ABCA1 mRNA expression was increased 3-fold in the small intestine of ACAT2 KO mice, we hypothesized that ABCA1-dependent cholesterol efflux sustains cholesterol absorption in the absence of ACAT2. To test this hypothesis, cholesterol absorption was measured in mice deficient in both ABCA1 and ACAT2 (DKO). Compared with wild-type, ABCA1 KO, or ACAT2 KO mice, DKO mice displayed the lowest level of cholesterol absorption. The concentrations of hepatic free and esterified cholesterol and gallbladder bile cholesterol were significantly reduced in DKO compared with wild-type and ABCA1 KO mice, although these measures of hepatic cholesterol metabolism were very similar in DKO and ACAT2 KO mice. We conclude that ABCA1, especially in the absence of ACAT2, can have a significant effect on cholesterol absorption, although ACAT2 has a more substantial role in this process than ABCA1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号