首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The body tail is a characteristic trait of vertebrates, which endows the animals with a variety of locomotive functions. During embryogenesis, the tail develops from the tail bud, where neural and mesodermal tissues make a major contribution. The neural tube in the tail bud develops by the process known as secondary neurulation (SN), where mesenchymal cells undergo epithelialization and tubulogenesis. These processes contrast with the well known primary neurulation, which is achieved by invagination of an epithelial cell sheet. In this study we have identified the origin of SN-undergoing cells, which is located caudo-medially to Hensen's node of early chicken embryo. This region is distinctly fate-mapped from tail-forming mesoderm. The identification of the presumptive SN region has allowed us to target this region with exogenous genes using in ovo electroporation techniques. The SN-transgenesis has further enabled an exploration of molecular mechanisms underlying mesenchymal-to-epithelial transition during SN, where activity levels of Cdc42 and Rac1 are critical. This is the first demonstration of molecular and cellular analyses of SN, which can be performed at a high resolution separately from tail-forming mesoderm.  相似文献   

2.
Changes in the shape of neuroepithelial cells, particularly apical constriction, are generally thought to play a major role in generating the driving forces for neural tube formation. Our previous study [Nagele and Lee (1987) J. Exp. Zool., 241:197-205] has shown that, in the developing midbrain region of stage 8+ chick embryos, neuroepithelial cells showing the greatest degree of apical constriction are concentrated at sites of enhanced bending of the neuroepithelium (i.e., the floor and midlateral walls of neural tube), suggesting that driving forces resulting from apical constriction are concentrated at these sites during closure of the neural tube. In the present study, we have used morphometric methods to 1) measure regional variations in the degree of apical constriction and apical surface folding at selected regions along the anteroposterior axis of stage 8+ chick embryos, which closely resemble the various ontogenetic phases of neural tube formation, and 2) investigate how forces resulting from apical constriction are distributed within the neuroepithelium during transformation of the neural plate into a neural tube. Results show that, during neural tube formation, driving forces resulting from apical constriction are not distributed uniformly throughout the neuroepithelium but rather are concentrated sequentially at three distinct locations: 1) the floor (during transformation of the neural plate to a V-shaped neuroepithelium), 2) the midlateral walls (during transformation of the V-shaped neuroepithelium into a C-shaped neuroepithelium), and 3) the upper walls (during the transformation of the C-shaped neuroepithelium into a closed neural tube).  相似文献   

3.

Background

The neural tube is formed by morphogenetic movements largely dependent on cytoskeletal dynamics. Actin and many of its associated proteins have been proposed as important mediators of neurulation. For instance, mice deficient in MARCKS, an actin cross-linking membrane-associated protein that is regulated by PKC and other kinases, present severe developmental defects, including failure of cranial neural tube closure.

Results

To determine the distribution of MARCKS, and its possible relationships with actin during neurulation, chick embryos were transversely sectioned and double labeled with an anti-MARCKS polyclonal antibody and phalloidin. In the neural plate, MARCKS was found ubiquitously distributed at the periphery of the cells, being conspicuously accumulated in the apical cell region, in close proximity to the apical actin meshwork. This asymmetric distribution was particularly noticeable during the bending process. After the closure of the neural tube, the apically accumulated MARCKS disappeared, and this cell region became analogous to the other peripheral cell zones in its MARCKS content. Actin did not display analogous variations, remaining highly concentrated at the cell subapical territory. The transient apical accumulation of MARCKS was found throughout the neural tube axis. The analysis of another epithelial bending movement, during the formation of the lens vesicle, revealed an identical phenomenon.

Conclusions

MARCKS is transiently accumulated at the apical region of neural plate and lens placode cells during processes of bending. This asymmetric subcellular distribution of MARCKS starts before the onset of neural plate bending. These results suggest possible upstream regulatory actions of MARCKS on some functions of the actin subapical meshwork.  相似文献   

4.
Neurulation is defined as a process of neural tube closure. Recent reports suggested that upon completion of this process the major factors of neurulation remain in force at least until the central canal of the neural tube is formed. Hence, an idea has been put forward to define the two periods of neurulation: early neurulation corresponds to the period of neural tube closure and late neurulation corresponds to the period of formation of the central canal. These ideas are discussed in a context of neural tube defects that may affect late neurulation and result in distention of the central canal.  相似文献   

5.
6.
Little is known about the tissue interactions and the molecular signals implicated in the sequence of events leading to the subdivision of the somite into its rostral and caudal compartments. It has been demonstrated that rostrocaudal identity of the sclerotome is acquired at the presomitic (PSM) level. However, it is not known whether this compartment specification is fully determined in the PSM or whether it is dependent upon maintenance cues from the surrounding environment, as is the case for somite epithelialization. In this report, we address this issue by examining the expression profiles of C-Delta-1 and C-Notch-1, the avian homologues of mouse Delta-like1 (Delta1) and Notch1 which have been implicated in the specification of the somite rostrocaudal polarity in mouse. In chick, these genes are expressed in distinct but partially overlapping domains in the PSM and subsequently in the caudal regions of the somites. We have used an in vitro assay that consists of culturing PSM explants to examine the regulation of these genes in this tissue. We find that PSM explants cultured without overlying ectoderm continue to lay down stripes of C-Delta-1 expression, although epithelialization is blocked. These results suggest that somite rostrocaudal patterning is an autonomous property of the PSM. In addition, they demonstrate that segmentation is not necessarily coupled with the formation of somites. Dev. Genet. 23:77–85, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
10.
Summary This paper suggests that chick somites form because presomitic cells exert tractional forces on one another. These forces derive from the increase in cell adhesion and density that occurs as N-CAM and N-cadherin are laid down by the motile cells of the presomitic mesoderm, well before the somites form. Harris et al. (1984) have shown that adhesive and motile cells in an appropriate environment in vitro can spontaneously form aggregates under the influence of the tractional forces that they exert. Presomitic mesodermal cells may behave similarly: as CAM production increases local adhesivity, the tractional forces between the cells should become sufficiently strong for groups of cells to segment off the mesenchyme as somites. The successive expression of CAMs down the presomitic mesoderm will thus lead to the formation of an anterior-posterior sequence of somites. This mechanism can explain several aspects of somitogenesis that models generating a repetitive pre-pattern through gating cohorts of cells find hard to explain: first, mesodermal segregation occurs among highly adherent cells; second, that multiple rows of somites can form in embryos cultured on highly adherent substrata; third, that stirred mesoderm will still form normal somites; and, fourth, how somite size can be altered in heat-shocked embryos and elsewhere. Suggestions are given as to how the mechanism may be tested and where else in the embryo it could apply.  相似文献   

11.
The Netrin receptor Deleted in colon cancer (Dcc) has been shown to play a pivotal role in the guidance of nascent axons towards the ventral midline in the developing nervous systems of both vertebrates and invertebrates. In contrast, the function during embryogenesis of a second Dcc-like Netrin receptor Neogenin has not yet been defined. We used antisense morpholino oligonucleotides to knockdown Neogenin activity in zebrafish embryos and demonstrate that Neogenin plays an important role in neural tube formation and somitogenesis. In Neogenin knockdown embryos, cavitation within the neural rod failed to occur, producing a neural tube lacking a lumen. Somite formation was also defective, implicating Neogenin in the migration events underlying convergent extension during gastrulation. These observations suggest a role for Neogenin in determining cell polarity or migrational directionality of both neuroectodermal and mesodermal cells during early embryonic development.  相似文献   

12.
Fibronectin distribution during somitogenesis in the chick embryo   总被引:2,自引:0,他引:2  
Somite formation in vertebrates is a multi-stage process. From a relatively homogeneous rod of mesenchyme, the segmental plate, somites are formed in a repeating sequence. Cell-cell adhesion has been proposed as a causal factor in somitogenesis. This led to an analysis of fibronectin in the segmental plate with respect to the initiation of somitogenesis. The pattern of fibronectin distribution can be correlated with the initiation of somitogenesis in the anterior portion of the segmental plate. Fibronectin distribution was determined using a high resolution antibody localization technique. Differences in fibronectin distribution were verified with computer-assisted image analysis. The evidence presented supports the hypothesis that an increase in cell-cell adhesion is a significant factor in the initiation of somitogenesis.  相似文献   

13.
Cell lineage in the developing neural tube.   总被引:12,自引:0,他引:12  
Acquisition of cell type specific properties in the spinal cord is a process of sequential restriction in developmental potential. A multipotent stem cell of the nervous system, the neuroepithelial cell, generates central nervous system and peripheral nervous system derivatives via the generation of intermediate lineage restricted precursors that differ from each other and from neuroepithelial cells. Intermediate lineage restricted neuronal and glial precursors termed neuronal restricted precursors and glial restricted precursors, respectively, have been identified. Differentiation is influenced by extrinsic environmental signals that are stage and cell type specific. Analysis in multiple species illustrates similarities between chick, rat, mouse, and human cell differentiation. The utility of obtaining these precursor cell types for gene discovery, drug screening, and therapeutic applications is discussed.  相似文献   

14.
Homozygous mutant curly tail mouse embryos developing spinal neural tube defects (NTD) exhibit a cell-type-specific abnormality of cell proliferation that affects the gut endoderm and notochord but not the neuroepithelium. We suggested that spinal NTD in these embryos may result from the imbalance of cell proliferation rates between affected and unaffected cell types. In order to test this hypothesis, curly tail embryos were subjected to influences that retard growth in vivo and in vitro. The expectation was that growth of unaffected rapidly growing cell types would be reduced to a greater extent than affected slowly growing cell types, thus counteracting the genetically determined imbalance of cell proliferation rates and leading to normalization of spinal neurulation. Food deprivation of pregnant females for 48 h prior to the stage of posterior neuropore closure reduced the overall incidence of spinal NTD and almost completely prevented open spina bifida, the most severe form of spinal NTD in curly tail mice. Analysis of embryos earlier in gestation showed that growth retardation acts by reducing the incidence of delayed neuropore closure. Culture of embryos at 40.5 degrees C for 15-23 h from day 10 of gestation, like food deprivation in vivo, also produced growth retardation and led to normalization of posterior neuropore closure. Labelling of embryos in vitro with [3H]thymidine for 1 h at the end of the culture period showed that the labelling index is reduced to a greater extent in the neuroepithelium than in other cell types in growth-retarded embryos compared with controls cultured at 38 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Knowledge of the morphogenetic events involved in the development of the dorsal portion of the neural tube is important for understanding neural tube closure, neural crest cell formation and emigration, and the origin of neural tube defects. Here, I characterize the progressive development of the tips of the neural folds during fold elevation in the trunk of mouse and chick embryos and the events leading to formation of the dorsal portion of the neural tube as the epidermal ectoderm (EE) and neuroepithelium (NE) separate from each other. The nature and timing of appearance of collagen IV, laminin and fibronectin were analysed by immunofluorescent and immunogold labelling, and ruthenium red and tannic acid were used to enhance staining for proteoglycans and glycosaminoglycans. As the neural folds elevate, the NE and EE delaminate progressively beginning at the basal surface of the lateral extremes of the neural plate. Nevertheless, the two epithelia remain connected across the zone of delamination by their previously existing basal laminae. In each fold, proteoglycan granules appear at the interface between the NE and EE before delamination begins, and then an (interepithelial) space begins to open and propagate dorsally. Other extracellular matrix (ECM) molecules appear within the space a short distance behind its tip and basal lamina deposition begins shortly thereafter. As fusion occurs, the interepithelial spaces of the two folds coalesce and the final separation of the EE from the NE is accomplished. These observations suggest that the previously recognized delay in deposition of ECM and basal lamina on the dorsal portion of the neural tube and on the overlying EE is a direct consequence of the delamination of the two epithelia and the establishment of two new basal surfaces. The observation that the surface of the dorsal third of the neural tube forms by delamination rather than by juxtaposition of previously existing basal surfaces of the two epithelial is discussed in terms of possible implications for models of neurulation and the origin of neural tube defects.  相似文献   

16.
17.
Mechanism of morphogenesis of caudal neural tube in the chick embryo   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号