共查询到20条相似文献,搜索用时 15 毫秒
1.
Candice A. Allister Li-fen Liu Cindy A. Lamendola Colleen M. Craig Samuel W. Cushman Marc K. Hellerstein Tracey L. McLaughlin 《Journal of lipid research》2015,56(2):435-439
Indirect evidence suggests that impaired triglyceride storage in the subcutaneous fat depot contributes to the development of insulin resistance via lipotoxicity. We directly tested this hypothesis by measuring, in vivo, TG synthesis, de novo lipogenesis (DNL), adipocyte proliferation, and insulin suppression of lipolysis in subcutaneous adipose tissue of BMI-matched individuals classified as insulin resistant (IR) or insulin sensitive (IS). Nondiabetic, moderately obese subjects with BMI 25–35 kg/m2, classified as IR or IS by the modified insulin suppression test, consumed deuterated water (2H2O) for 4 weeks. Deuterium incorporation into glycerol, palmitate, and DNA indicated TG synthesis, DNL, and adipocyte proliferation, respectively. Net TG synthesis and DNL in adipose cells were significantly lower in IR as compared with IS subjects, whereas adipocyte proliferation did not differ significantly. Plasma FFAs measured during an insulin suppression test were 2.5-fold higher in IR subjects, indicating resistance to insulin suppression of lipolysis. Adipose TG synthesis correlated directly with DNL but not with proliferation. These results provide direct in vivo evidence for impaired TG storage in subcutaneous adipose tissue of IR as compared with IS. Relative inability to store TG in the subcutaneous depot may represent a mechanism contributing to the development of insulin resistance in the setting of obesity. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(15):2765-2766
Comment on: Tran KV, et al. Cell Metab 2012; 15:222-9. 相似文献
3.
Comment on: Tran KV, et al. Cell Metab 2012; 15:222-9. 相似文献
4.
WU LiZhen ZHOU LinKang CHEN Cheng GONG JingYi XU Li YE Jing LI De LI Peng 《中国科学:生命科学英文版》2014,57(1):107-116
Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes,fatty liver and cardiovascular diseases.The lipid droplet(LD)is an important subcellular organelle responsible for lipid storage.We previously observed that Fsp27,a member of the CIDE family proteins,is localized to LD-contact sites and promotes atypical LD fusion and growth.Cidea,a close homolog of Fsp27,is expressed at high levels in brown adipose tissue.However,the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown.Here,we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth.Next,we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype.In addition,Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold.Furthermore,we observed that the brown and white adipose tissues of Cidea/Fsp27double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27single deficient mice.Overall,these data reveal an important role of Cidea in controlling lipid droplet fusion,lipid storage in brown and white adipose tissue,and the development of obesity. 相似文献
5.
Kirsi A. Virtanen Wouter D. van Marken Lichtenbelt Pirjo Nuutila 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(5):1004-1008
Human adults have functionally active BAT. The metabolic function can be reliably measured in vivo using modern imaging modalities (namely PET/CT). Cold seems to be one of the most potent stimulators of BAT metabolic activity but other stimulators (for example insulin) are actively studied. Obesity is related to lower metabolic activity of BAT but it may be reversed after successful weight reduction such as after bariatric surgery. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. 相似文献
6.
Maggie S. Burhans Matthew T. Flowers Kristin R. Harrington Laura M. Bond Chang-An Guo Rozalyn M. Anderson James M. Ntambi 《Journal of lipid research》2015,56(2):304-318
Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues. 相似文献
7.
Minehira K Young SG Villanueva CJ Yetukuri L Oresic M Hellerstein MK Farese RV Horton JD Preitner F Thorens B Tappy L 《Journal of lipid research》2008,49(9):2038-2044
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity. 相似文献
8.
A significant diurnal variation in the rates of lipogenesisin vivo in brown adipose tissue occurred in both virgin and lactating rats. On a meal-feeding regime of either a chow, high-sucrose, or high-lipid diet, there was a very large increase in BAT lipogenesis following the meal. The rates observed after the sucrose meal are the highest so far reported. There was no significant difference in BAT lipogenesis between lactating and virgin rats, contrary to previous reports by others. The pattern of stimulation of BAT lipogenesis by these feeding regimes was different from that for white adipose tissue and liver and was not correlated with plasma insulin levels. 相似文献
9.
Influence of the diet and grazing on adipose tissue lipogenic activities and plasma leptin in steers
Faulconnier Y Ortigues-Marty I Delavaud C Dozias D Jailler R Micol D Chilliard Y 《Animal : an international journal of animal bioscience》2007,1(9):1263-1271
The objectives of the two experiments were to determine the respective effects and interactions of diet type (grass v. maize diets) and physical activity (grazing v. zero grazing) on lipogenic enzyme activities and adipose cell size in subcutaneous, perirenal and intermuscular adipose tissues and on plasma metabolites and hormones in Charolais steers. After weaning, the steers were assigned to two (Experiment 1, n = 24) or three (Experiment 2, n = 24) groups, with steers in Experiment 1 grazed grass or indoors maize-silage-fed and steers in Experiment 2 grazed grass, indoors cut grass- or indoors maize-silage-fed. Both experiments lasted for 23 months. All grass-fed animals were fed grass silage during the two winter seasons. During the two summer seasons, steers fed on grass were rotationally grazed on a perennial rye-grass pasture while steers fed on cut grass were fed indoors on freshly cut grass alone. Steers fed on maize silage were fed maize silage indoors during the entire experiment. All animals were reared for similar body weight and growth rates and slaughtered at the same age (31 to 32 months). Activities of lipogenic enzymes were significantly lower in the three adipose tissue sites of steers fed cut grass compared with maize silage, although there were less-marked effects in intermuscular adipose tissue. Plasma insulin and glucose concentrations were also lower in steers fed cut grass whereas plasma leptin concentration was similar. As body fat content was not affected by nutritional treatment, it is suggested that the decrease in potential lipogenic activity was associated with the nature of the diet and not to differences in available net energy. In other respects, grazed grass compared with eating cut grass did not affect lipogenic enzyme activities but decreased plasma leptin concentrations in the older steers and increased plasma non-esterified fatty acids and glucose concentrations without affecting adipose tissue weight and adipose cell size. 相似文献
10.
Prunet-Marcassus B Cousin B Caton D André M Pénicaud L Casteilla L 《Experimental cell research》2006,312(6):727-736
In mammals, two types of adipose tissues are present, brown (BAT) and white (WAT). WAT itself can be divided into subcutaneous and internal fat deposits. All these tissues have been shown to present a great tissue plasticity, and recent data emphasized on the multiple differentiation potentials obtained from subcutaneous WAT. However, no study has compared the heterogeneity of stroma-vascular fraction (SVF) cells and their differentiation potentials according to the localization of the fat pad. This study clearly demonstrates that WAT and BAT present different antigenic features and differentiation potentials. WAT by contrast to BAT contains a large population of hematopoietic cells composed essentially of macrophages and hematopoietic progenitor cells. In WAT, the non-hematopoietic population is mainly composed of mesenchymal stem cell (MSC)-like but contains also a significant proportion of immature cells, whereas in BAT, the stromal cells do not present the same phenotype. Internal and subcutaneous WAT present some discrete differences in the phenotype of their cell populations. WAT derived SVF cells give rise to osteoblasts, endothelial cells, adipocytes, hematopoietic cells, and cardiomyoblasts only from inguinal cells. By contrast, BAT derived SVF cells display a reduced plasticity. Adipose tissues thus appear as complex tissues composed of different cell subsets according to the location of fat pads. Inguinal WAT appears as the most plastic adipose tissue and represents a potential and suitable source of stem cell, considering its easy sampling as a major advantage for cell therapy. 相似文献
11.
12.
《Archives of animal nutrition》2013,67(1):53-67
The effect of ethanol exposure on the fatty acid composition of brown and white adipose tissue in three successive rat progenies at the end of an experimental period (24 weeks) was studied. Ethanol‐treated rats received a standard rat chow diet and 5, 10 and 15% ethanol in the ad libitum drinking fluid over 3 successive weeks. Then a concentration of 20% ethanol was maintained for 5 additional weeks up to the end of the experimental period. The males and females in the ethanol treated group were mated to obtain the 1st generation of offspring. Then female and male rats from the 1st generation were mated to obtain the 2nd generation. Finally, males and females from the 2nd generation were mated to obtain the 3rd generation of ethanol treated rats. Another group served as control and received only water and a standard rat chow diet. The control group was handled in the same way as the other experimental groups. In the 1st and 2nd generations the percentage of stearic acid (18:0) decreased and palmitoleic (16:ln7) and oleic acid (18:ln9) increased in both adipose tissues of ethanol‐treated rats with respect to control. Additionally, n‐3 and n‐6 series were reduced both in brown and white adipose tissues. In the 3rd generation the fatty acid composition of the white adipose tissue was similar to that of control rats. Thus, no significant difference in essential fatty acids and oleic acid (18:ln9) were found. However, the fatty acid composition of the brown adipose tissue, in the 3rd generation, was similar to that observed in the 1st and 2nd generation. Thus, a decrease in essential fatty acids and an increase in oleic acid (18:ln9) was found. This suggests adaptation to ethanol consumption during successive progenies in white adipose tissue. However, in brown adipose tissue the values indicate a triglyceride storing during the thermogenesis, which is more important to newborns. 相似文献
13.
Sofie J. Huybrechts Paul P. Van Veldhoven Chantal Brees Guy P. Mannaerts Georgyi V. Los Marc Fransen 《Traffic (Copenhagen, Denmark)》2009,10(11):1722-1733
Despite the identification and characterization of various proteins that are essential for peroxisome biogenesis, the origin and the turnover of peroxisomes are still unresolved critical issues. In this study, we used the HaloTag technology as a new approach to examine peroxisome dynamics in cultured mammalian cells. This technology is based on the formation of a covalent bond between the HaloTag protein–a mutated bacterial dehalogenase which is fused to the protein of interest–and a synthetic haloalkane ligand that contains a fluorophore or affinity tag. By using cell-permeable ligands of distinct fluorescence, it is possible to image distinct pools of newly synthesized proteins, generated from a single genetic HaloTag-containing construct, at different wavelengths. Here, we show that peroxisomes display an age-related heterogeneity with respect to their capacity to incorporate newly synthesized proteins. We also demonstrate that these organelles do not exchange their protein content. In addition, we present evidence that the matrix protein content of pre-existing peroxisomes is not evenly distributed over new organelles. Finally, we show that peroxisomes in cultured mammalian cells, under basal growth conditions, have a half-life of approximately 2 days and are mainly degraded by an autophagy-related mechanism. The implications of these findings are discussed. 相似文献
14.
15.
F Grégoire G Todoroff N Hauser C Remacle 《Biology of the cell / under the auspices of the European Cell Biology Organization》1990,69(3):215-222
The stroma-vascular fraction (SVF) of inguinal and epididymal fat pads of 4 week-old rats was studied by electron microscopy. Among the various cell types, endothelial cells and preadipocytes were found in both SVF, while mesothelial cells were only detected in the epididymal SVF. The resulting heterogeneity of primary culture and the adipoconversion of the fat cell precursors were studied in a serum-supplemented medium enriched with insulin (14.5 nM) and exogenous triglycerides. Despite the heterogeneity of the inoculum, the primary cultures were rather homogeneous, fat cell precursors being the main cell type. Distinctive contaminant fibroblast-like cells were observed in both cultures, whereas epithelial-like cells, which correspond most probably to mesothelial cells, were only found in epididymal cultures. Differentiation of fat cell precursors was assessed by the appearance of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH). LPL activity was found in the same level in cells of both deposits while GPDH activity was elevated in inguinal vs epididymal derived stroma-vascular cells. The different adipose conversion pattern of both cultures was confirmed by morphological quantification: the maturation of epididymal fat cell precursors was faster but less extensive. These differences could be related mainly to regional localization rather than to different maturation of the two fat deposits. 相似文献
16.
Steven M. Romanelli Kenneth T. Lewis Akira Nishii Alan C. Rupp Ziru Li Hiroyuki Mori Rebecca L. Schill Brian S. Learman Christopher J. Rhodes Ormond A. MacDougald 《The Journal of biological chemistry》2021,297(6)
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology. 相似文献
17.
Catherine P. Ward Lucy Peng Samuel Yuen John Halstead Hector Palacios Edna Nyangau Hussein Mohammed Naveed Ziari Mohamad Dandan Ashley E. Frakes Holly K. Gildea Andrew Dillin Marc
K. Hellerstein 《Aging cell》2022,21(3)
Age is a risk factor for numerous diseases, including neurodegenerative diseases, cancers, and diabetes. Loss of protein homeostasis is a central hallmark of aging. Activation of the endoplasmic reticulum unfolded protein response (UPRER) includes changes in protein translation and membrane lipid synthesis. Using stable isotope labeling, a flux “signature” of the UPRER in vivo in mouse liver was developed by inducing ER stress with tunicamycin and measuring rates of both proteome‐wide translation and de novo lipogenesis. Several changes in protein synthesis across ontologies were noted with age, including a more dramatic suppression of translation under ER stress in aged mice as compared with young mice. Binding immunoglobulin protein (BiP) synthesis rates and mRNA levels were increased more in aged than young mice. De novo lipogenesis rates decreased under ER stress conditions in aged mice, including both triglyceride and phospholipid fractions. In young mice, a significant reduction was seen only in the triglyceride fraction. These data indicate that aged mice have an exaggerated metabolic flux response to ER stress, which may indicate that aging renders the UPRER less effective in resolving proteotoxic stress. 相似文献
18.
Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease 总被引:7,自引:0,他引:7
Iacobellis G Pistilli D Gucciardo M Leonetti F Miraldi F Brancaccio G Gallo P di Gioia CR 《Cytokine》2005,29(6):251-255
BACKGROUND: Intra-peritoneal adipose tissue is recognized as a predictor of metabolic syndrome and may contribute to the risk for cardiovascular disease by the production of adipocytokines, including adiponectin. Nevertheless, there is no knowledge on whether other visceral depots of adipose tissue, including the epicardial fat, have any metabolically active role, including production of adiponectin. AIM OF THE STUDY: We sought to evaluate adiponectin protein expression in epicardial adipose tissue in vivo both in patients with severe coronary artery disease (CAD) and in subjects without CAD. METHODS: Twenty-two patients were enrolled for the study. We selected 16 patients who underwent elective coronary artery bypass graft surgery for critical CAD, 5 who underwent surgery for valve replacement and 1 for correction of an interatrial defect. Epicardial adipose tissue biopsy samples were obtained before the initiation of cardiopulmonary bypass. Adiponectin protein level in epicardial adipose tissue was evaluated by Western blotting. RESULTS: Adiponectin protein value, expressed as adiponectin/actin ratio, in epicardial adipose tissue was significantly lower in patients with severe CAD than in those without CAD (1.42 +/- 0.77 vs 2.36 +/- 0.84 p = 0.02, 95% CI 0.64-1.74). CONCLUSIONS: This study showed for the first time that human epicardial adipose tissue expresses adiponectin. Adiponectin expression is significantly lower in epicardial fat isolated from patients with CAD. 相似文献
19.
WEYER, CHRISTIAN AND RICHARD E. PRATLEY. Fasting and postprandial plasma concentrations of acylation-stimulation protein (ASP) in lean and obese Pima Indians compared to Caucasians. Obes Res. Objective: ASP stimulates the clearance of free fatty acids (FFA) from the circulation and the synthesis of triglycerides (TG) in adipose tissue. We tested whether fasting and post-prandial plasma ASP concentrations are increased in Pima Indians, a population with a very high prevalence of obesity, but a remarkably low prevalence of dyslipidemia. Research Methods and Procedures: Plasma concentrations of ASP, TG, FFA, total cholesterol (CHOL), and insulin (INS) were measured in 15 Pima Indians (P) and 15 Caucasians (C) closely matched for age, sex, and body weight [7 lean and 8 obese subjects, body mass index (BMI) cut-off 30 kg/m2], before and for 4 hours after a standard mixed meal (20% of daily caloric requirements, 41% carbohydrate, 44% fat, 15% protein). Results: Fasting ASP was positively related to percent body fat (dual energy X-ray absorptiometry; r=0. 49, p<0. 01) and to TG and FFA, independently of percent body fat (partial r = 0. 42 and 0. 46, respectively, both p <0. 05). There were no differences in fasting TG, FFA, CHOL, INS, or ASP between lean C and lean P. In contrast, obese P had lower TG, lower CHOL, higher INS and, on average, 27% lower ASP compared to obese C. The ethnic difference in ASP remained after adjustment for TG, FFA, and percent body fat. ASP decreased in response to the meal in all four groups with no differences between groups. There was a significant inverse correlation between preprandial ASP and the change in FFA 60 minutes after the meal (r = ?0. 56, p<0. 001). Discussion: Pima Indians do not have higher plasma ASP concentrations than Caucasians. Whether other alterations in the ASP-pathway, such as increased sensitivity of adipocytes to ASP, contribute to the high prevalence of obesity and low prevalence of dyslipidemia in Pima Indians, remains to be elucidated. 相似文献