首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and metabolic fate of purine nucleotides were studied, employing labeled precursors, in primary rat muscle cultures. The cultures were found to produce purine nucleotides, by de novo and salvage pathways, both exhibiting dependence on cellular availability of substrate 5-phosphoribosyl-1-pyrophosphate (PPRibP). Depletion of cellular PPRibP decelerated the rate of purine synthesis, whereas increasing PPRibP generation by high Pi concentration in the incubation medium, accelerated purine synthesis. Ribose accelerated purine synthesis, indicating that ribose 5-phosphate availability in the cultured muscle is limiting for PPRibP synthesis. The study in the muscle cultures of the metabolic fate if IMP formed from [14C]formate and that of nucleotides formed from labeled purine bases, revealed that the main flow in the nucleotide interconversions pathways is from AMP to IMP. The flow from IMP to GMP and to AMP appeared to be of a lesser magnitude and virtually no flow could be detected from GMP to IMP. The greatest proportion of radioactivity of purine nucleotides following synthesis by either de novo or salvage pathways, accumulated in IMP, reflecting the relative rates of flows between the various nucleotides and probably also a relatively low, or inhibited activity of the IMP nucleotidase. The results suggest that primary muscle cultures are a plausible model for the study of the role of purine metabolism in muscle work.  相似文献   

2.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

3.
We have studied purine metabolism in the culture forms of Leishmania donovani and Leishmania braziliensis. These organisms are incapable of synthesizing purines de novo from glycine, serine, or formate and require an exogenous purine for growth. This requirement is better satisfied by adenosine or hypoxanthine than by guanosine. Bothe adenine and inosine are converted to a common intermediate, hypoxanthine, before transformation to nucleotides. This is due to the activity of an adenine aminohydrolase (EC 3.5.4.2), a rather unusual finding in a eukaryotic cell. There is a preferential synthesis of adenine nucleotides, even when guanine or xanthine are used as precursors.The pathways of purine nucleotide interconversions in these Leishmania resemble those found in mammalian cells except for the absence of de novo purine biosynthesis and the presence of an adenine-deaminating activity.  相似文献   

4.
In previous studies, we found that castration induced interesting morphological and biochemical changes in rat liver. For the present study, we have examined the effects of testosterone on the kinetics of purine nucleotide metabolism with the aim of determining the steps affected by testosterone deficiency. A biomathematical model of purine nucleotide metabolism was used to analyze the many reactions involved. The model simplifies purine nucleotide metabolism to four main steps: 1) de novo synthesis from PRPP to IMP; 2) the inosinic branch point from IMP to GMP or AMP; 3) catabolism of IMP, AMP and GMP to uric acid; 4) RNA and DNA formation from AMP and GMP. We evaluated rate constants from each step from variations in specific radioactivity of metabolites labelled with (14)C-formate, a precursor of de novo synthesis. The model was applied to the liver of normal and castrated rats before and after testosterone treatment. All four steps were slowed after castration, and were not completely restored by androgen administration. The model can give a clear representation of the kinetics of the reactions involved in the liver nucleotide metabolism investigated here, and we propose that a similar approach could be useful whenever a quantitative evaluation of the results obtained in vivo after administration of labelled precursors is required.  相似文献   

5.
Human B lymphoblast lines severely deficient in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) were selected for resistance to 6-thioguanine from cloned normal and phosphoribosylpyrophosphate (PP-Rib-P) synthetase-superactive cell lines and were compared with their respective parental cell lines with regard to growth and PP-Rib-P and purine nucleotide metabolism. During blockade of purine synthesis de novo with 6-methylthioinosine or aminopterin, inhibition of growth of all HGPRT-deficient cell lines was refractory to addition of Ade at concentrations which restored substantial growth to parental cell lines. Ade-resistant inhibition of growth of parental lines by 6-methylthioinosine, however, occurred during Ado deaminase inhibition. Insufficient generation of IMP (and ultimately guanylates) to support growth of lymphoblasts lacking HGPRT activity and blocked in purine synthesis de novo best explained these findings, implying that a major route of interconversion of AMP to IMP involves the reaction sequence: AMP----Ado----Ino----Hyp----IMP. PP-Rib-P generation and purine nucleoside triphosphate pools were unchanged by introduction of HGPRT deficiency into normal lymphoblast lines, in agreement with the view that accelerated purine synthesis de novo in this deficiency results from increased availability of PP-Rib-P for the pathway. Cell lines with dual enzyme defects did not differ from PP-Rib-P synthetase-superactive parental lines in rates of PP-Rib-P and purine synthesis despite 5-6-fold increases in PP-Rib-P concentrations, excretion of nearly 50% of newly synthesized purines, and diminished GTP concentrations. Fixed rates of purine synthesis de novo in PP-Rib-P synthetase-superactive cells appeared to reflect saturation of the rate-limiting amidophosphoribosyltransferase reaction for PP-Rib-P. In combination with accelerated purine excretion, increased channeling of newly formed purines into adenylates, and impaired conversion of AMP to IMP, fixed rates of purine synthesis de novo may condition cell lines with defects in HGPRT and PP-Rib-P synthetase to depletion of GTP with consequent growth retardation.  相似文献   

6.
7.
8.
9.
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.  相似文献   

10.
Pathways of purine nucleotide metabolism affecting the availability of ATP in the muscle tissue were studied in differentiating rat muscle cultures. The rate of de novo purine nucleotide synthesis and of AMP deamination were found to increase markedly with cell differentiation, but the rate of IMP dephosphorylation was similarly low in both myoblasts and contracting fibers. The above differentiation-associated alterations in purine nucleotide metabolism conform with the greater need for ATP as a source of energy in the contracting myotubes.  相似文献   

11.
Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.  相似文献   

12.
E Zoref-Shani  O Sperling 《Enzyme》1980,25(6):413-418
Cultured fibroblasts with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency exhibited acceleration of purine synthesis de novo, absence of salvage IMP synthesis from hypoxanthine, but normal total IMP synthesis. Cells with phosphoribosylpyrophosphate synthetase superactivity exhibited acceleration of both de novo and salvage IMP synthesis and increased total IMP synthesis. The study of mutant cells furnished evidence that in normal as well as mutant cells, GMP and AMP are not converted to each other in significant amounts and that these nucleotides are not degraded by nucleotidases. Purine nucleotide degradation in fibroblasts occurs mainly by dephosphorylation of IMP. In HGPRT-containing cells, salvage IMP synthesis from preformed and exogenously supplied hypoxanthine is the main source for IMP production.  相似文献   

13.
14.
Light serves as a key environmental signal for synchronizing the circadian clock with the day night cycle. The zebrafish represents an attractive model for exploring how light influences the vertebrate clock mechanism. Direct illumination of most fish tissues and cell lines induces expression of a broad range of genes including DNA repair, stress response and key clock genes. We have previously identified D- and E-box elements within the promoter of the zebrafish per2 gene that together direct light-induced gene expression. However, is the combined regulation by E- and D-boxes a general feature for all light-induced gene expression? We have tackled this question by examining the regulation of additional light-inducible genes. Our results demonstrate that with the exception of per2, all other genes tested are not induced by light upon blocking of de novo protein synthesis. We reveal that a single D-box serves as the principal light responsive element within the cry1a promoter. Furthermore, upon inhibition of protein synthesis D-box mediated gene expression is abolished while the E-box confers light driven activation as observed in the per2 gene. Given the existence of different photoreceptors in fish cells, our results implicate the D-box enhancer as a general convergence point for light driven signaling.  相似文献   

15.
Bloodstream forms of Trypanosoma brucie gambiense and Trypanosoma brucei rhodesiense are incapable of de novo purine synthesis. Purine bases are converted directly to ribonucleotides and with the exception of guanine, are stable. Guanine is incorporated directly into ribonucleotides and also deaminated to xanthine. Purine ribonucleosides are hydrolyzed rapidly; these reactions may limit their incorporation since purine bases label the nucleotide pools more efficiently than do ribonucleosides. The apparent order of salvage efficiency for ribonucleosides is adenosine>inosine>guanosine>xanthosine for both organisms. T. b. gambiense salvages purine bases in the same order, while T. b. rhodesiense salvages purine bases in the order hypoxanthine>adenine>guanine>xanthine.  相似文献   

16.
Arthrobacter sp. CGMCC 3584 are able to produce cAMP from glucose by the purine synthesis pathway via de novo or salvage biosynthesis. In order to gain an improved understanding of its metabolism, 13C-labeling experiment and gas chromatography–mass spectrometry (GC–MS) analysis were employed to determine the metabolic network structure and estimate the intracellular fluxes. GC–MS analysis helps to reflect the activity of the intracellular pathways and reactions. The metabolic network mainly contains glycolytic and pentose phosphate pathways, the tricarboxylic acid cycle, and the inactive glyoxylate shunt. Hypoxanthine as a precursor of cAMP and sodium fluoride as an inhibitor of glycolysis were found to increase the cAMP production, as well as the flux through the PP pathway. The effects of adding hypoxanthine and sodium fluoride are discussed based on the enzyme assays and metabolic flux analysis. In conclusion, our results provide quantitative insights into how cells manipulate the metabolic network under different culture conditions and this may be of value in metabolic regulation for desirable production.  相似文献   

17.
18.
The metabolism of some purine compounds to urate and their effects on de novo urate synthesis in chicken hepatocytes were investigated. The purines, listed in descending order of rates of catabolism to urate, were hypoxanthine, xanthine, inosine, guanosine, guanine, IMP, GMP, adenosine, AMP, and adenine. During a 1-h incubation period, conversion to urate accounted for more than 80% of the total quantities of guanine, guanosine, and inosine metabolized, but only 42% of the adenosine and 23% of the adenine metabolism. Adenine, adenosine, and AMP inhibited de novo urate synthesis [( 14C]formate incorporation into urate), whereas the other purines, especially guanine, guanosine, and GMP, stimulated de novo urate synthesis. When hepatocytes were incubated with glutamine and adenosine, AMP, guanine, guanosine, or GMP, the rates of de novo urate synthesis were lower than the additive effects of glutamine and the purine in separate incubations. Increasing phosphate concentrations had no effect on urate synthesis in the absence of added purines but, in combination with adenosine, AMP, guanosine, or GMP, increased urate synthesis. These results indicate that the ratio of adenine to guanine nucleotides and the interaction between substrates and purine nucleotides are involved in the regulation of urate biosynthesis in chicken liver.  相似文献   

19.
20.
A number of antagonists of nucleotide metabolism with anti-cancer activity affect the de novo purine pathway. To determine the biochemical mechanisms of cytotoxicity of these drugs, assay procedures have been developed for measurement of the levels of intermediates proximal to IMP in the pathway for de novo purine biosynthesis in mouse L1210 leukemia cells. Purine precursors have been synthesized in vitro from [14C]glycine using enzymes from chicken liver. These 14C-labeled intermediates have been used as marker compounds to define retention times for metabolites of leukemia cells separated by HPLC and the chromatographic mobilities of these intermediates after two-dimensional thin-layer chromatography. These new chromatographic procedures have been used in combination to determine the steady-state concentrations for purine precursors in mouse L1210 leukemia cells in the exponential phase of growth: N-formylglycineamide ribotide (16 microM); N-formylglycineamidine ribotide (4.7 microM); 5-aminoimidazole ribotide (4.0 microM); 4-carboxy-5-aminoimidazole ribotide (0.46 microM); N-succino-5-aminoimidazole-4-carboxamide ribotide (11 microM); 5-aminoimidazole-4-carboxamide ribotide (16 microM); 5-formamidoimidazole-4-carboxamide ribotide (2.7 microM); and IMP (57 microM). The metabolic effects of tiazofurin (25 microM) upon mouse L1210 leukemia cells growing in culture define a "metabolic crossover point" at the reaction catalyzed by IMP dehydrogenase (EC 1.1.1.205) which confirms previous reports of inhibition of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号