首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bone, mineralization is tightly regulated by osteoblasts and hypertrophic chondrocytes which release matrix vesicles (MVs) and control extracellular ionic conditions and matrix composition. MVs are the initial sites of hydroxyapatite (HA) mineral formation. Despite growing knowledge about their morphology and function, their biogenesis is not well understood. The purpose of this work was to determine the source of MVs in osteoblast lineage, Saos‐2 cells, and to check whether MVs originated from microvilli. Microvilli were isolated from the apical plasma membrane of Saos‐2 cells. Their morphology, structure, and function were compared with those of MVs. The role of actin network in MV release was investigated by using microfilament perturbing drugs. When examined by electron microscopy MVs and microvillar vesicles were found to exhibit similar morphology with trilaminar membranes and diameters in the same range. Both types of vesicles were able to induce HA formation. Their electrophoretic profiles displayed analogous enrichment in alkaline phosphatase, Na+/K+ ATPase, and annexins A2 and A6. MVs and microvillar vesicles exhibited almost the same lipid composition with a higher content of cholesterol, sphingomyelin, and phosphatidylserine as compared to plasma membrane. Finally, cytochalasin D, which inhibits actin polymerization, was found to stimulate release of MVs. Our findings were consistent with the hypothesis that MVs originated from cell microvilli and that actin filament disassembly was involved in their biogenesis. J. Cell. Biochem. 106: 127–138, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
ABSTRACT

Introduction: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes.

Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs’ role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis.

Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.  相似文献   

3.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

4.
Exosomes are 40–100 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of oncogenic proteins as well as mRNA and miRNA. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. However, all preparations invariably contain varying proportions of other membranous vesicles that co-purify with exosomes such as shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, in this study we performed a comprehensive evaluation of current methods used for exosome isolation including ultracentrifugation (UC-Exos), OptiPrep? density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM coated magnetic beads (IAC-Exos). Notably, all isolations contained 40–100 nm vesicles, and were positive for exosome markers (Alix, TSG101, HSP70) based on electron microscopy and Western blotting. We employed a proteomic approach to profile the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, we found IAC-Exos to be the most effective method to isolate exosomes. For example, Alix, TSG101, CD9 and CD81 were significantly higher (at least 2-fold) in IAC-Exos, compared to UG-Exos and DG-Exos. Application of immunoaffinity capture has enabled the identification of proteins including the ESCRT-III component VPS32C/CHMP4C, and the SNARE synaptobrevin 2 (VAMP2) in exosomes for the first time. Additionally, several cancer-related proteins were identified in IAC-Exos including various ephrins (EFNB1, EFNB2) and Eph receptors (EPHA2–8, EPHB1–4), and components involved in Wnt (CTNNB1, TNIK) and Ras (CRK, GRB2) signalling.  相似文献   

5.
The study of extracellular vesicles (EVs) is a rapidly evolving field, owing in large part to recent advances in the realization of their significant contributions to normal physiology and disease. Once discredited as cell debris, these membrane vesicles have now emerged as mediators of intercellular communication by interaction with target cells, drug and gene delivery, and as potentially versatile platforms of clinical biomarkers as a result of their distinctive protein, nucleic acid and lipid cargoes. While there are multiple classes of EVs released from almost all cell types, here we focus primarily on the biogenesis, fate and functional cargoes of microvesicles (MVs). MVs regulate many important cellular processes including facilitating cell invasion, cell growth, evasion of immune response, stimulating angiogenesis, drug resistance and many others.   相似文献   

6.
AimTo investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta.MethodsThe relaxation response to NaOH-induced extracellular alkalinization (7.4–8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10?6 M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10?5 M), NG-nitro-l-arginine methyl ester (L-NAME, 10?4 M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10?7 M), 2,5-dimethylbenzimidazole (DMB, 2 × 10?5 M) and methyl-β-cyclodextrin (10?2 M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 μM), in the presence and absence of DMB (2 × 10?5 M).ResultsThe extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca2+/calmodulin and Na+/Ca2+ exchanger (NCX), and partially blunted by the caveolae disassembly.ConclusionsThese results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca2+ concentration and activating the Ca2+/calmodulin-dependent NOS. In turn, NO is released promoting relaxation.  相似文献   

7.
Gram‐negative bacteria secrete small particles called membrane vesicles (MVs) into the extracellular milieu. While MVs have important roles in delivering toxins from pathogenic bacteria to eukaryotic cells, these vesicles also play ecological roles necessary for survival in various environmental conditions. Pseudomonas aeruginosa, which lives in soil, ocean, plant, animal and human environments, has become a model organism for studying these small extracellular particles. Such studies have increased our understanding of the function and biogenesis of bacterial MVs. Pseudomonas aeruginosa MVs possess versatile components and chemical substances with unique structures. These characteristics allow MVs to play their multifunctional biological roles, including microbial interaction, maintenance of biofilm structure and host infection. This review summarizes the comprehensive biochemical and physiochemical properties of MVs derived from P. aeruginosa. These studies will help us understand their biological roles of MVs not only in pathogenicity but also in microbial ecology. Also, the mechanisms of MV production, as currently understood, are discussed.  相似文献   

8.
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid–protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid–protein and lipid–lipid interfaces throughout the process.  相似文献   

9.
BackgroundSedentary behavior is an independent risk factor for the metabolic syndrome, but the role of sedentary behavior in the development of gestational diabetes is unclear.ObjectivesThis study tested the hypothesis that less sedentary behavior is related to better insulin sensitivity, lipid and cytokine profile in obese pregnant women.MethodsA longitudinal observational study with 46 overweight and obese pregnant women was conducted. Sedentary behavior was measured objectively using accelerometers at 15, 24 and 32 weeks of gestation, and at those time points fasting blood was taken as well. A 100 g oral glucose tolerance test was performed at 24 and 32 weeks. Levels of glucose, insulin, total cholesterol, HDL, LDL, triglycerides were measured, as well as cytokines. The relationship between sedentary behavior and metabolic outcomes was assessed using linear regression analysis.ResultsWomen spent almost 60% of their time sitting throughout pregnancy. In cross-sectional analyses, an association of sedentary time at 24 weeks was found with increased total cholesterol and HDL. More sedentary time was associated with lower IL-6 at 24 weeks and with higher IL-10, TNF-α and leptin levels at 32 weeks of pregnancy. Changes in sedentary time were not associated with changes in any of the metabolic outcomes.ConclusionsIn conclusion, time spent sedentary in pregnancy was associated with lipid and cytokine profile. Whether decreasing sedentary time beneficially influences lipid profile and influences cytokine profiles of overweight and obese women needs to be assessed in future intervention studies.  相似文献   

10.

Background

Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation.

Methods

PolyP was quantified by 4′,6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization.

Results

PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation.

Conclusion

PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix.

General significance

PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.  相似文献   

11.
BackgroundWe have previously shown that high fat (HF) feeding during pregnancy primes the development of non-alcoholic steatohepatits (NASH) in the adult offspring. However, the underlying mechanisms are unclear.AimsSince the endogenous molecular clock can regulate hepatic lipid metabolism, we investigated whether exposure to a HF diet during development could alter hepatic clock gene expression and contribute to NASH onset in later life.MethodsFemale mice were fed either a control (C, 7% kcal fat) or HF (45% kcal fat) diet. Offspring were fed either a C or HF diet resulting in four offspring groups: C/C, C/HF, HF/C and HF/HF. NAFLD progression, cellular redox status, sirtuin expression (Sirt1, Sirt3), and the expression of core clock genes (Clock, Bmal1, Per2, Cry2) and clock-controlled genes involved in lipid metabolism (Rev-Erbα, Rev-Erbβ, RORα, and Srebp1c) were measured in offspring livers.ResultsOffspring fed a HF diet developed NAFLD. However HF fed offspring of mothers fed a HF diet developed NASH, coupled with significantly reduced NAD+/NADH (p < 0.05, HF/HF vs C/C), Sirt1 (p < 0.001, HF/HF vs C/C), Sirt3 (p < 0.01, HF/HF vs C/C), perturbed clock gene expression, and elevated expression of genes involved lipid metabolism, such as Srebp1c (p < 0.05, C/HF and HF/HF vs C/C).ConclusionOur results suggest that exposure to excess dietary fat during early and post-natal life increases the susceptibility to develop NASH in adulthood, involving altered cellular redox status, reduced sirtuin abundance, and desynchronized clock gene expression.  相似文献   

12.
BackgroundApoptotic death of endothelial cells (EC) plays a crucial role for the development of ischemic injury. In the present study we investigated the impact of extracellular Adenosine-5′-triphosphate (ATP), either released from cells or exogenously added, on ischemia-induced apoptosis of human EC.Methods and resultsTo simulate ischemic conditions, cultured human umbilical vein endothelial cells (HUVEC) were exposed to 2 h of hypoxia (Po2 < 4 mm Hg) in serum-free medium. Ischemia led to a 1.7-fold (+/?0.4; P < 0.05) increase in EC apoptosis compared to normoxic controls as assessed by immunoblotting and immunocytochemistry of cleaved caspase-3. Ischemia-induced apoptosis was accompanied by a 2.3-fold (+/?0.5; P < 0.05) increase of extracellular ATP detected by using a luciferin/luciferase assay. Addition of the soluble ecto-ATPase apyrase, enhancing ATP degradation, increased ischemia-induced caspase-3 cleavage. Correspondingly, inhibition of ATP breakdown by addition of the selective ecto-ATPase inhibitor ARL67156 significantly reduced ischemia-induced apoptosis. Extracellular ATP acts on membrane-bound P2Y- and P2X-receptors to induce intracellular signaling. Both, ATP and the P2Y-receptor agonist UTP significantly reduced ischemia-induced apoptosis in an equipotent manner, whereas the P2X-receptor agonist αβ-me-ATP did not alter caspase-3 cleavage. The anti-apoptotic effects of ARL67156 and UTP were abrogated when P2-receptors were blocked by Suramin or PPADS. Furthermore, extracellular ATP led to an activation of MEK/ERK- and PI3K/Akt-signaling pathways. Accordingly, inhibition of MEK/ERK-signaling by UO126 or inhibition of PI3K/Akt-signaling by LY294002 abolished the anti-apoptotic effects of ATP.ConclusionThe data of the present study indicate that extracellular ATP counteracts ischemia-induced apoptosis of human EC by activating a P2Y-receptor-mediated signaling reducing caspase-3 cleavage.  相似文献   

13.
BackgroundMegakaryocytes (MKs), a rare population of bone marrow cells, are responsible for the production of platelets. Sick neonates are predisposed to developing thrombocytopenia (platelet count <150 × 109/L) and neonates are affected by several megakaryocyte disorders as compared to adults.HypothesisMicroRNAs (miRNAs) have been shown to crucially involve in the regulation of stem-cell differentiation in normal as well as malignant hematopoiesis, but their role in regulation of biological differences between adult and neonatal megakaryopoiesis is unknown.MethodsTo study this, we cultured human cord blood (CB) and peripheral blood (PB) derived CD34+ cells in the presence of thrombopoietin for 14 days and collected cultures expressing >90% CD41+ by flow cytometry and studied 88 miRNAs involved in stem cell development and differentiation. miRNA validation studies were performed in Dami cell line.ResultsOut of 88 miRNAs involved in stem cell development, let-7b was the only miRNA down regulated (∼10-fold) in neonates compared to adult-MKs. Let-7b has not been previously described in MKs, however reduced expression of let-7b was found in several human cancers, suggesting that it functions as a tumor suppressor. Our results showed the inhibitory effect of let-7b on wnt signaling pathway by regulating Fzd4 (frizzled family receptor 4) and thereby regulating proliferation as well as differentiation. Let-7b down regulation induced mitochondrial biogenesis and its markers PGC-1α and NRF1 during megakaryocyte development.ConclusionsOur findings for the first time unveil the novel role of let-7b/Fzd4 axis through wnt signaling by regulating mitochondrial biogenesis during megakaryocyte development.  相似文献   

14.
Waisundara VY  Siu SY  Hsu A  Huang D  Tan BK 《Life sciences》2011,88(23-24):1016-1025
AimThe primary purpose of this study was to characterize and investigate the antioxidant and anti-diabetic activities of the flavonoid baicalin in type 2 diabetic Goto-Kakizaki rats.Main methodsFour groups of Goto-Kakizaki rats (n = 6) were subjected to the following oral treatments for 30 days: (1) metformin — 500 mg/kg (2) baicalin — 120 mg/kg (3) metformin 500 mg/kg and baicalin — 120 mg/kg (4) vehicle treated diabetic controls receiving distilled water. The plasma glucose, triglyceride, total cholesterol, lipid peroxide and protein carbonyl contents were measured on a weekly basis. Following the completion of the treatment, the rats were sacrificed and their blood, heart, pancreatic and hepatic tissues were collected for analysis. The antioxidant enzyme activities as well as their expression were quantified using Western Blot, microarray and RT-PCR.Key findingsThe respective analyses showed that the baicalin- and the metformin and baicalin-treated groups had statistically significant increases (p < 0.05) in the activity and expression of the antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) compared with vehicle- and metformin-treated groups. Further complementing the antioxidant enzyme activity increases, the oxidative stress markers of plasma lipid peroxide and protein carbonyl contents were reduced in these groups as well. These treatment groups also had reduced plasma total cholesterol and triglyceride levels compared with vehicle-treated and metformin-treated groups (p < 0.05).SignificanceBaicalin was an efficient antioxidant in reducing hyperglycemia-induced oxidative stress through the increased expression of antioxidant enzyme activities. It was also an efficient anti-hypertriglyceridemic as well as anti-hypercholesterolemic agent compared with metformin.  相似文献   

15.
Matrix vesicles (MVs) are extracellular organelles involved in the initial steps of mineralization. MVs are isolated by two methods. The first isolation method of MVs starts with collagenase digestion of osseous tissues, followed by two differential centrifugations. The second isolation method does not use proteases but rather starts with differential centrifugation, followed by a fractionation on a sucrose gradient. The first method results in a homogeneous population of MVs with higher cholesterol/lipid content, alkaline phosphatase activity, and mineral formation rate as compared with MVs isolated by the second method. The second method leads to higher protein diversity as compared with MVs isolated according to the first method. Due to their distinct protein composition, lipid-to-protein and cholesterol-to-phospholipid ratios, and differences in rates of mineral formation, both types of isolated MVs are crucial for proteomic analysis and for understanding the regulation of mineralization process at the molecular level.  相似文献   

16.
AimsCocaine and heroin are frequently co-abused in a combination known as speedball. Despite the relevance of the liver in the metabolism and detoxification of these drugs, little is known about the impact of speedball on liver function.Main methodsIn this work, we evaluated the effects of cocaine, morphine and morphine + cocaine (Mor + Coc) combination (1:1) in isolated rat liver mitochondria, upon glutamate/malate or succinate energization, on bioenergetics and oxidative stress-related parameters by using Clark O2, Ca2 +, TPP+ and pH electrodes and by measuring thiobarbituric acid reactive substances (TBARS) and H2O2 production.Key findingsCocaine and Mor + Coc at the higher concentrations (1 mM) similarly increased O2 consumption at state 2, state 4 and state oligomycin. In these conditions, maximum respiration was decreased only upon glutamate/malate energization, suggesting an involvement of complex I. Morphine (1 mM) only increased state 2 respiration. Cocaine and Mor + Coc induced a similar decrease in maximum mitochondrial membrane potential and in ADP-induced depolarization, whereas morphine had no effect. The drugs and their combination similarly decreased mitochondrial ATPase activity and had no effect on Ca2 +-induced permeability transition. Morphine and Mor + Coc prevented lipid peroxidation, since in these conditions there was a decrease in O2 consumption and in TBARS upon ADP/Fe2 + stimulus, and a decrease in H2O2 formation, suggesting an antioxidant effect. Interestingly, heroin did not share morphine antioxidant properties.SignificanceOur results show that the sequential direct exposure of liver mitochondria to morphine and cocaine does not alter the effects observed in the presence of each drug alone.  相似文献   

17.
AimsTo investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice.Methods and ResultsExperiments were performed using irradiated LDL receptor-deficient (LDLR−/−) mice with marrow from either TLR4-deficient (TLR4−/−) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4−/−  LDLR−/− mice developed fewer atherosclerotic lesions in the aorta compared to WT  LDLR−/− mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4−/−  LDLR−/− mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4−/− mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4−/− mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects.ConclusionsThese results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.  相似文献   

18.
BackgroundMicroRNAs, small non-coding RNAs involved in gene regulation, are implicated in lymphomagenesis. We evaluated whether genetic variations in microRNA coding regions, binding sites, or biogenesis genes (collectively referred to as miRNA-SNPs) were associated with risk of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL), and serum levels of four lymphoma-related microRNAs.MethodsTwenty-five miRNA-SNPs were genotyped in 180 AIDS-NHL cases and 529 HIV-infected matched controls from the Multicenter AIDS Cohort Study (MACS), and real-time polymerase chain reaction was used to quantify serum microRNA levels. Adjusted odds ratios (ORs) estimated using conditional logistic regression evaluated associations between miRNA-SNPs and AIDS-NHL risk. A semi-Bayes shrinkage approach was employed to reduce likelihood of false-positive associations. Adjusted mean ratios (MR) calculated using linear regression assessed associations between miRNA-SNPs and serum microRNA levels.ResultsDDX20 rs197412, a non-synonymous miRNA biogenesis gene SNP, was associated with AIDS-NHL risk (OR = 1.34 per minor allele; 95% CI: 1.02–1.75), and higher miRNA-222 serum levels nearing statistical significance (MR = 1.21 per minor allele; 95% CI: 0.98–1.49). MiRNA-196a2 rs11614913 was associated with decreased central nervous system (CNS) AIDS-NHL (CT vs. CC OR = 0.52; 95% CI: 0.27–0.99). The minor allele of HIF1A rs2057482, which creates a miRNA-196a2 binding site, was associated with systemic AIDS-NHL risk (OR = 1.73 per minor allele; 95% CI: 1.12–2.67), and decreased CNS AIDS-NHL risk (OR = 0.49 per minor allele; 95% CI: 0.25–0.94).ConclusionsThis study suggests that a few miRNA-SNPs are associated with AIDS-NHL risk and may modulate miRNA expression. These results support a role for miRNA in AIDS-NHL and may highlight pathways to be targeted for risk stratification or therapeutics.  相似文献   

19.
20.
In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca2 +-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca2 + than palmitic acid (PA): 1 mM versus 100 μM respectively. (2) The OA/Ca2 +-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca2 +. (3) The addition of Ca2 + to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca2 +-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca2 + (30 and 100 μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca2 +-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca2 +-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca2 +-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca2 +- and OA/Ca2 +-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号