首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase.  相似文献   

3.
Attempts to inactivate an essential gene in the protozoan parasite Leishmania have often led to the generation of extra copies of the wild-type alleles of the gene. In experiments with Leishmania tarentolae set up to disrupt the gene encoding the J-binding protein 1 (JBP1), a protein binding to the unusual base beta-D-glucosyl-hydroxymethyluracil (J) of Leishmania, we obtained JBP1 mutants containing linear DNA elements (amplicons) of approximately 100 kb. These amplicons consist of a long inverted repeat with telomeric repeats at both ends and contain either the two different targeting cassettes used to inactivate JBP1, or one cassette and one JBP1 gene. Each long repeat within the linear amplicons corresponds to sequences covering the JBP1 locus, starting at the telomeres upstream of JBP1 and ending in a approximately 220 bp sequence repeated in an inverted (palindromic) orientation downstream of the JBP1 locus. We propose that these amplicons have arisen by a template switch inside a DNA replication fork involving the inverted DNA repeats and helped by the gene targeting.  相似文献   

4.
beta-d-Glucosylhydroxymethyluracil, also called base J, is an unusual modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously found a J-binding protein (JBP) in Trypanosoma, Leishmania, and Crithidia. We have now characterized the binding properties of recombinant JBP from Crithidia using synthetic J-DNA substrates that contain the glycosylated base in various DNA sequences. We find that JBP recognizes base J only when presented in double-stranded DNA but not in single-stranded DNA or in an RNA:DNA duplex. It also fails to interact with free glucose or free base J. JBP is unable to recognize nonmodified DNA or intermediates of J synthesis, suggesting that JBP is not directly involved in J biosynthesis. JBP binds J-DNA with high affinity (K(d) = 40-140 nm) but requires at least 5 bp flanking the glycosylated base for optimal binding. The nature of the flanking sequence affects binding because J in a telomeric sequence binds JBP with higher affinity than J in another sequence known to contain J in trypanosome DNA. We conclude that JBP is a structure-specific DNA-binding protein. The significance of these results in relation to the biological role and mechanism of action of J modification in kinetoplastids is discussed.  相似文献   

5.
Synthesis of the modified thymine base beta-D-glucosyl-hydroxymethyluracil, or J, within telomeric DNA of Trypanosoma brucei correlates with the bloodstream-form-specific epigenetic silencing of telomeric variant surface glycoprotein genes involved in antigenic variation. The mechanism of developmental and telomeric-specific regulation of J synthesis is unknown. We have previously identified a J binding protein (JBP1) involved in propagating J synthesis. We have now identified a homolog of JBP1, JBP2, containing a domain related to the SWI2/SNF2 family of chromatin remodeling proteins that is upregulated in bloodstream form cells and interacts with nuclear chromatin. We show that expression of JBP2 in procyclic form cells leads to de novo J synthesis within telomeric regions of the chromosome and that this activity is inhibited after mutagenesis of conserved residues critical for SWI2/SNF2 function. We propose a model in which chromatin remodeling by JBP2 regulates the initial sites of J synthesis within bloodstream form trypanosome DNA, with further propagation and maintenance of J by JBP1.  相似文献   

6.
7.
It has been previously shown that linear plasmids bearing Tetrahymena telomeric sequences are able to replicate autonomously in the filamentous fungus Podospora anserina (1). However, autonomous replication occurs in only 50-70% of the transformants, suggesting a defect in the recognition of the Tetrahymena telomeric template by the putative P. anserina telomerase so that only a fraction of entering DNA is stabilized into linear extrachromosomal molecules. We have cloned DNA sequences added to the Tetrahymena (T2G4)n ends of the linear plasmid. Nucleotide sequencing showed that these sequences are exclusively composed of T2AG3 repeat units. Hybridization experiments of Bal31 treated DNA showed that T2AG3 repeats are confined within 200 bp in chromosomal P. anserina telomeres. A new plasmid has been constructed so that after linearization, the terminal sequences contain T2AG3 repeats. This linear molecule transforms P. anserina with a high frequency (up to 1.75 x 10(4) transformants/micrograms), autonomous replication occurs in 100% of the transformants and the plasmid copy number is about 2-3 per nucleus. These results underscore the importance of the telomeric repeat nucleotide sequence for efficient recognition as functional telomeric DNA in vivo and provide the first step toward the development of an artificial chromosome cloning system for filamentous fungi.  相似文献   

8.
The J-binding protein 1 (JBP1) is essential for biosynthesis and maintenance of DNA base-J (β-d-glucosyl-hydroxymethyluracil). Base-J and JBP1 are confined to some pathogenic protozoa and are absent from higher eukaryotes, prokaryotes and viruses. We show that JBP1 recognizes J-containing DNA (J-DNA) through a 160-residue domain, DB-JBP1, with 10 000-fold preference over normal DNA. The crystal structure of DB-JBP1 revealed a helix-turn-helix variant fold, a ‘helical bouquet’ with a ‘ribbon’ helix encompassing the amino acids responsible for DNA binding. Mutation of a single residue (Asp525) in the ribbon helix abrogates specificity toward J-DNA. The same mutation renders JBP1 unable to rescue the targeted deletion of endogenous JBP1 genes in Leishmania and changes its distribution in the nucleus. Based on mutational analysis and hydrogen/deuterium-exchange mass-spectrometry data, a model of JBP1 bound to J-DNA was constructed and validated by small-angle X-ray scattering data. Our results open new possibilities for targeted prevention of J-DNA recognition as a therapeutic intervention for parasitic diseases.  相似文献   

9.
We explored the ability of S. cerevisiae to utilize heterologous DNA sequences as telomeres by cloning germline (micronuclear) DNA from Tetrahymena thermophila on a linear yeast plasmid that selects for telomere function. The only Tetrahymena sequences that functioned in this assay were (C4A2)n repeats. Moreover, these repeats did not have to be derived from Tetrahymena telomeres, although we show that micronuclear telomeres (like macronuclear telomeres) of Tetrahymena terminate in (C4A2)n repeats. Chromosome-internal restriction fragments carrying (C4A2)n repeats also stabilized linear plasmids and were elongated by yeast telomeric repeats. In one case, the C4A2 repeat tract was approximately 1.5 kb from the end of the genomic Tetrahymena DNA fragment that was cloned, but this 1.5 kb of DNA was missing from the linear plasmid. Thus, yeast can utilize internally located tracts of telomere-like sequences, after the distal DNA is removed. The data provide an example of broken chromo-some healing, and underscore the importance of the telomeric repeat structure for recognition of functional telomeric DNA in vivo.  相似文献   

10.
Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. InSaccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG1–3 of 300–350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1–3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids. Published: February 17, 2003  相似文献   

11.
After selection for migration into the nucleus, a cytoplasmic yeast linear plasmid bearing an inverted terminal repeat (ITRs) at each end replicates in Saccharomyces cerevisiae in a linear form, called pTLU, which carries host telomeric repeats (TG(1-3))(n) of about 300-350 bp added to the ITR ends. We previously showed that the nucleotide composition of the added telomeric sequences varied among individual pTLU isolates, while those on the two ends of any given pTLU were always identical. The telomeric sequences of pTLU remained unchanged over numbers of cell generations when cells were selected for expression of the plasmid-borne nuclear marker. We report here that progressive alterations in telomeric sequences can be detected in cells which are grown under non-selective conditions. Surprisingly, in any given molecule, the telomeric alterations occur exclusively on one side, either the left or the right end, while the sequence at the opposite end remained identical to the original, suggesting a difference in the mode of DNA replication between the plasmid ends. These alterations occur over a broad area extending from the termini of telomeres to nucleotides near the junction between the telomeric sequences and the pTLU-ITR, implying that the plasmid ends undergo successive rounds of extension and contraction. Clonal analysis under non-selective conditions indicated that the alterations in telomeric sequences are generally associated with extreme instability of the pTLU plasmid.  相似文献   

12.
Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.  相似文献   

13.
Plasmids containing two inverted 0.6-kb stretches of human telomeric repeats transform Aspergillus nidulans at frequencies characteristic of autonomously replicating vectors. Transformation frequency is not affected when the plasmids are linearized in vitro prior to transformation by cutting between the inverted repeats. Southern analysis reveals the presence of a homogeneous pool of linear plasmid molecules in mycelium of transformants. Addition of the AMA1 plasmid replicator to the telomere-containing plasmids has only a minor effect on transformation. The phenotypic stability of the transformants is low. However, unlike conventional replicative transformants containing AMA1-bearing plasmids, these transformants are prone to spontaneous stabilization which occurs predominantly by conversion of the mutant chromosomal allele of the marker gene to the plasmid-borne allele. The data strongly suggest that telomeric DNA can act as a plasmid replicator. An alternative interpretation is that autonomous replication of linear DNA fragments, in contrast to covalently closed supercoiled molecules, does not require any special replicator sequences.  相似文献   

14.
Beta-D-Glucosyl-hydroxymethyluracil, also called base J, is an unusually modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously identified a J-binding protein (JBP) in Trypanosoma, Leishmania, and Crithidia, and we have shown that it is a structure-specific binding protein. Here we examine the molecular interactions that contribute to recognition of the glycosylated base in synthetic DNA substrates using modification interference, modification protection, DNA footprinting, and photocross-linking techniques. We find that the two primary requirements for J-DNA recognition include contacts at base J and a base immediately 5' of J (J-1). Methylation interference analysis indicates that the requirement of the base at position J-1 is due to a major groove contact independent of the sequence. DNA footprinting of the JBP.J-DNA complex with 1,10-phenanthroline-copper demonstrates that JBP contacts the minor groove at base J. Substitution of the thymine moiety of J with cytosine reduces the affinity for JBP approximately 15-fold. These data indicate that the sole sequence dependence for JBP binding may lie in the thymine moiety of base J and that recognition requires only two specific base contacts, base J and J-1, within both the major and minor groove of the J-DNA duplex.  相似文献   

15.
Plasmids remain important microbial components mediating the horizontal gene transfer (HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strategy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assembled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to β-lactam, fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns), insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs were linked to MGEs, allowing for the establishment of a relationship network between MGEs and/or ARGs that can be used to describe the dissemination of resistance by mobile elements. Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B, ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multicopy composite transposition event was illustrated by tracing its flanking 8-bp target site duplications (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complexity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT profiles.  相似文献   

16.
The anti-tumour drug, cisplatin, preferentially forms adducts at G-rich DNA sequences. Telomeres are found at the ends of chromosomes and, in humans, contain the repeated DNA sequence (GGGTTA)n that is expected to be targeted by cisplatin. Using a plasmid clone with 17 tandem telomeric repeats, (GGGTTA)17, the DNA sequence specificity of cisplatin was investigated utilising the linear amplification procedure that pin-pointed the precise sites of cisplatin adduct formation. This procedure used a fluorescently labelled primer and capillary electrophoresis with laser-induced fluorescence detection to determine the DNA sequence specificity of cisplatin. This technique provided a very accurate analysis of cisplatin-DNA adduct formation in a long telomeric repeat DNA sequence. The DNA sequence specificity of cisplatin in a long telomeric tandem repeat has not been previously reported. The results indicated that the 3′-end of the G-rich strand of the telomeric repeat was preferentially damaged by cisplatin and this suggests that the telomeric DNA repeat has an unusual conformation.  相似文献   

17.
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.  相似文献   

18.
The nuclear DNA of Trypanosoma brucei and other kinetoplastid flagellates contains the unusual base beta-d-glucosyl-hydroxymethyluracil, called J, replacing part of the thymine in repetitive sequences. We have described a 100 kDa protein that specifically binds to J in duplex DNA. We have now disrupted the genes for this J-binding protein (JBP) in T. brucei. The disruption does not affect growth, gene expression or the stability of some repetitive DNA sequences. Unexpectedly, however, the JBP KO trypanosomes contain only about 5% of the wild-type level of J in their DNA. Excess J, randomly introduced into T. brucei DNA by growing the cells in the presence of the J precursor 5-hydroxymethyldeoxyuridine, is lost by simple dilution as the KO trypanosomes multiply, showing that JBP does not protect J against removal. In contrast, cells containing JBP lose excess J only sluggishly. We conclude that JBP is able to activate the thymine modification enzymes to introduce additional J in regions of DNA already containing a basal level of J. We propose that JBP is a novel DNA modification maintenance protein.  相似文献   

19.
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.  相似文献   

20.
Telomeres are protein–DNA complexes that protect chromosome ends from degradation and fusion. In Leishmania spp., telomeric DNA comprises a conserved TTAGGG repeat and is maintained by telomerase. Telomerase is a multisubunit enzymatic complex that ensures the complete DNA replication by adding new telomeric repeats to the G-rich strand. In this report we aimed to purify and study the biochemical properties of Leishmani amazonensis telomerase. In a first trial we used affinity chromatography with antisense 2′-O-methyl oligonucleotide without success since the Leishmania telomerase, similarly to Trypanosoma cruzi enzyme, was not eluted by competition, but instead, it remained bound to the column. Partially purified L. amazonensis telomerase activity was achieved by fractionation of extracts on complementary ion exchange and Heparin columns. Further purification of these fractions on a G-rich telomeric DNA affinity chromatography enriched for telomerase activity. The knowledge of telomerase characteristics in Leishmania could help to develop new strategies to overcome leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号