首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

2.
In the last decade, the search for new vaccines against canine visceral leishmaniasis has intensified. However, the pattern related to immune protection during long periods after experimental infection in vaccine trials is still not fully understood. Herein, we investigated the immunogenicity and parasitological levels after intradermal challenge with Leishmania infantum plus salivary gland extract in dogs immunized with a vaccine composed of L. braziliensis antigens plus saponin as an adjuvant (LBSap vaccine). The LBSap vaccine elicited higher levels of total anti-Leishmania IgG as well as both IgG1 and IgG2. Furthermore, dogs vaccinated had increased levels of lymphocytes, particularly circulating B cells (CD21+) and both CD4+ and CD8+ T lymphocytes. LBSap also elicited an intense in vitro cell proliferation associated with higher levels of CD4+ T lymphocytes specific for vaccine soluble antigen and soluble lysate of L. infantum antigen even 885 days after experimental challenge. Furthermore, LBSap vaccinated dogs presented high IFN-γ and low IL-10 and TGF-β1 expression in spleen with significant reduction of parasite load in this tissue. Overall, our results validate the potential of LBSap vaccine to protect against L. infantum experimental infection and strongly support further evaluation of efficiency of LBSap against CVL in natural infection conditions.  相似文献   

3.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

4.
 T lymphocytes are important both for the host defence against infections and probably also as antileukaemic effector cells in patients with acute leukaemia. To investigate the T lymphocyte cytokine repertoire of clonogenic T lymphocytes, CD4+ and CD8+ T lymphocyte clones were prepared from acute leukaemia patients with chemotherapy-induced cytopenia (leucocytes <0.5×109/l). A majority of both CD4+ and CD8+ clones secreted detectable interleukin-2 (IL-2), IL-10, IL-13, granulocyte/macrophage-colony-stimulating factor and interferon γ (IFNγ) in response to phytohaemagglutinin + accessory cells (Epstein-Barr-virus-transformed B cell line, 80-Gy-irradiated). The CD4+ clones showed significantly higher levels of IL-10 secretion than the CD8+ clones. Decreased levels of IL-2, IL-13 and IFNγ were observed when acute myelogenous leukaemia (AML) blasts were used instead of cells from the B cell line as accessory cells during phytohaemagglutinin activation, but the differences in IL-13 and IFNγ levels were reversed by addition of exogenous IL-2. On the basis of these results we conclude: (i) the remaining clonogenic T lymphocytes derived from acute leukaemia patients with therapy-induced leucopenia can respond to activation with a broad cytokine response, and T-cell-derived cytokines may then contribute to cytokine responses during complicating infections in these patients; (ii) although T cells can modulate AML blast functions and mediate antileukaemic effects, the leukaemia blasts will also modulate T cell functions and alter the cytokine profile of activated T lymphocytes. Received: 6 November 1997 / Accepted: 5 March 1998  相似文献   

5.
Vitamin A supplementation has shown to prevent mortality by diarrheal and respiratory diseases in several countries. Nevertheless, there are few studies investigating the effect of vitamin A in visceral leishmaniasis (VL), although there are reports of its deficiency in children with symptomatic VL in Brazil and Bangladesh. This study analyzed the effect of vitamin A on a subset of Treg cells and monocytes isolated from symptomatic VL and from healthy children residing in an endemic area for VL in Northeast Brazil. Serum retinol concentrations correlated inversely with IL-10 and TGF-β productions in CD4+CD25highFoxp3+ T cells isolated from children with VL stimulated with leishmanial antigens. All-trans retinoic acid in vitro induced IL-10 in CD4+CD25highFoxp3+ T cells; IL-10 and TGF-β production in CD4+CD25Foxp3 T cells, and IL-10 in monocytes isolated from healthy children. However, the use of all-trans retinoic acid together with leishmanial antigens in vitro prevented increases in IL-10 production in Treg cells and monocytes isolated from VL children. Strikingly, those results show a potential dual role of vitamin A in the immune system: improvement of a regulatory profile in cells from healthy children after leishmanial stimulation and down modulation of IL-10 in Treg cells and monocytes during symptomatic VL. Therefore, the use of vitamin A concomitant to VL therapy might be useful in improving recovery from disease status caused by Leishmania infantum infection and warrants additional study.  相似文献   

6.
The use of adjuvants in vaccine formulations is a well-established practice to improve immunogenicity and protective immunity against diseases. Previously, we have demonstrated the feasibility of intranasal vaccination with the antigen of killed Leishmania amazonensis promastigotes (LaAg) against experimental leishmaniasis. In this work, we sought to optimize the immunogenic effect and protective immunity against murine visceral leishmaniasis conferred by intranasal delivery of LaAg in combination with a synthetic TLR1/TLR2 agonist (Pam3CSK4). Intranasal vaccination with LaAg/PAM did not show toxicity or adverse effects, induced the increase of delayed-type hypersensitivity response and the production of inflammatory cytokines after parasite antigen recall. However, mice vaccinated with LaAg/PAM and challenged with Leishmania infantum presented significant reduction of parasite burden in both liver and spleen, similar to those vaccinated with LaAg. Although LaAg/PAM intranasal vaccination had induced higher frequencies of specific CD4+ and CD8+ T cells and increased levels of IgG2a antibody isotype in serum, both LaAg and LaAg/PAM groups presented similar levels of IL-4 and IFN-y and decreased production of IL-10 when compared to controls. Our results provide the first evidence of the feasibility of intranasal immunization with antigens of killed Leishmania in association with a TLR agonist, which may be explored for developing an effective and alternative strategy for vaccination against visceral leishmaniasis.  相似文献   

7.
 Normal peripheral blood mononuclear cells (PBMC responders) were cultured together with non-irradiated allogeneic PBMC (more than 95% leukaemia blasts) derived from patients with acute leukaemia (referred to as leukaemic PBMC stimulators). Cytokine secretion was determined as cytokine concentrations in supernatants. Both normal PBMC and enriched CD4+ and CD8+ T cells responded to allostimulation with interferon (IFNγ) secretion. Interleukin-1 (IL-1) receptor antagonist and IL-2-neutralizing antibodies decreased IFNγ secretion. Exogenous IL-1β, IL-2 and IL-7 increased allostimulated IFNγ secretion, whereas decreased levels were seen in the presence of IL-6, IL-10 and granulocyte-colony-stimulating factor (G-CSF). During allorecognition IFNγ -neutralizing antibodies decreased acute myelogenous leukaemia (AML) blast secretion of G-CSF. We conclude that (i) both CD4+ and CD8+ T cells show allostimulated cytokine secretion in response to allogeneic stimulator cells containing a dominating population of native, cytokine-secreting leukaemia blasts, and (ii) IFNγ released during this response can modulate the function of allogeneic AML blasts. Received: 4 June 1996 / Accepted: 15 October 1996  相似文献   

8.
9.
IL-10 is a critical regulatory cytokine involved in the pathogenesis of visceral leishmaniasis caused by Leishmania donovani and clinical and experimental data indicate that disease progression is associated with expanded numbers of CD4+ IFNγ+ T cells committed to IL-10 production. Here, combining conditional cell-specific depletion with adoptive transfer, we demonstrate that only conventional CD11chi DCs that produce both IL-10 and IL-27 are capable of inducing IL-10-producing Th1 cells in vivo. In contrast, CD11chi as well as CD11cint/lo cells isolated from infected mice were capable of reversing the host protective effect of diphtheria toxin-mediated CD11c+ cell depletion. This was reflected by increased splenomegaly, inhibition of NO production and increased parasite burden. Thus during chronic infection, multiple CD11c+ cell populations can actively suppress host resistance and enhance immunopathology, through mechanisms that do not necessarily involve IL-10-producing Th1 cells.  相似文献   

10.
A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves’ disease (GD), Hashimoto’s thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed.  相似文献   

11.

Background

The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs'' sera.

Methodology/Main Findings

Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws'' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies.

Conclusions/Significance

This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.  相似文献   

12.
We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8+ T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR+ cells within CD8+ T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8+ T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8+ T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.  相似文献   

13.
Leishmaniases are vector-borne diseases for which no vaccine exists. These diseases are caused by the Leishmania species complex. Activation of the CD8+ T cell is crucial for protection against intracellular pathogens, and peptide antigens are attractive strategies for the precise activation of CD8+ T in vaccine development against intracellular infections. The traditional approach to mine the epitopes is an arduous task. However, with the advent of immunoinformatics, in silico epitope prediction tools are available to expedite epitope identification. In this study, we employ different immunoinformatics tools to predict CD8+ T cell specific 9 mer epitopes presented by HLA-A*02 and HLA-B40 within the highly conserved 3′-ectonucleotidase of Leishmania donovani. We identify five promiscuous epitopes, which have no homologs in humans, theoretically cover 85% of the world's population and are highly conserved (100%) among Leishmania species. Presentation of selected peptides was confirmed by T2 cell line based HLA-stabilization assay, and three of them were found to be strong binders. The in vitro peptide stimulation of peripheral blood mononuclear cells (PBMC) from cured HLA-A02+ visceral leishmaniasis (VL) subjects produced significantly higher IFN-γ, IL-2 and IL-12 compared to no peptide control healthy subjects. Further, CD8+ cells from treated VL subjects produced significantly higher intracellular IFN-γ, lymphocyte proliferation and cytotoxic activity against selected peptides from the PBMCs of treated HLA-A02+ VL subjects. Thus, the CD8+ T cell specific epitopes shown in this study will speed up the development of polytope vaccines for leishmaniasis.  相似文献   

14.
Visceral leishmaniasis is associated with atrophy and histological disorganization of splenic compartments. In this paper, we compared organized and disorganized splenic lymphoid tissue from dogs naturally infected with Leishmania infantum assessing the size of the white pulp compartments, the distribution of T, B and S100+ dendritic cells, using immunohistochemistry and morphometry and the expression of CCR7 and the cytokines, CXCL13, lymphotoxin (LT)-α, LT-β, CCL19, CCL21, TNF-α, IL-10, IFN-γ and TGF-β, using by real time RT-PCR. The lymphoid follicles and marginal zones were smaller (3.2 and 1.9 times, respectively; Mann-Whitney, P<0.02) in animals with disorganized splenic tissue in comparison to those with organized splenic lymphoid tissue. In spleens with disorganized lymphoid tissue, the numbers of T cells and S100+ dendritic cells were decreased in the follicles, and the numbers of B cells were reduced in both the follicles and marginal zones. CXCL13 mRNA expression was lower in animals with disorganized lymphoid tissue (0.5±0.4) compared to those with organized lymphoid tissue (2.7±2.9, both relative to 18S expression, P = 0.01). These changes in the spleen were associated with higher frequency of severe disease (7/12) in the animals with disorganized than in animals with organized (2/13, Chi-square, P = 0.01) splenic lymphoid tissue. The data presented herein suggest that natural infection with Leishmania infantum is associated with the impairment of follicular dendritic cells, CXCL13 expression, B cell migration and germinal center formation and associates these changes with severe clinical forms of visceral leishmaniasis. Furthermore the fact that this work uses dogs naturally infected with Leishmania infantum emphasizes the relevance of the data presented herein for the knowledge on the canine and human visceral leishmaniasis.  相似文献   

15.
BackgroundNatural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown.AimThe aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4+ lymphocytes.MethodsPurified human CD4+ T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry.ResultsNeither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4+ lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were significantly increased in CHF5633 exposed CD4+ lymphocytes.ConclusionFor the first time, the immunomodulatory capacity of CHF5633 on CD4+ lymphocytes was evaluated. CHF5633 did not show any cytotoxicity on CD4+ cells. Moreover, our in vitro data indicate that CHF5633 does not exert unintended pro-inflammatory effects on non-activated and activated CD4+ T cells. As far as anti-inflammatory cytokines are concerned, it might lack an overall reductive ability in comparison to animal-derived surfactants, potentially leaving pro- and anti-inflammatory cytokine response in balance.  相似文献   

16.
IntroductionPre-naïve B cells represent an intermediate stage in human B-cell development with some functions of mature cells, but their involvement in immune responses is unknown. The aim of this study was to determine the functional role of normal pre-naïve B cells during immune responses and possible abnormalities in systemic lupus erythematosus (SLE) that might contribute to disease pathogenesis.MethodsPre-naïve, naïve, and memory B cells from healthy individuals and SLE patients were stimulated through CD40 and were analyzed for interleukin-10 (IL-10) production and co-stimulatory molecule expression and their regulation of T-cell activation. Autoreactivity of antibodies produced by pre-naïve B cells was tested by measuring immunoglobulin M (IgM) autoantibodies in culture supernatants after differentiation.ResultsCD40-stimulated pre-naïve B cells produce larger amounts of IL-10 but did not suppress CD4+ T-cell cytokine production. Activated pre-naïve B cells demonstrated IL-10-mediated ineffective promotion of CD4+ T-cell proliferation and induction of CD4+FoxP3+ T cells and IL-10 independent impairment of co-stimulatory molecule expression and tumor necrosis factor-alpha (TNF-α) and IL-6 production. IgM antibodies produced by differentiated pre-naïve B cells were reactive to single-stranded deoxyribonucleic acid. SLE pre-naïve B cells were defective in producing IL-10, and co-stimulatory molecule expression was enhanced, resulting in promotion of robust CD4+ T-cell proliferation.ConclusionsThere is an inherent and IL-10-mediated mechanism that limits the capacity of normal pre-naïve B cells from participating in cellular immune response, but these cells can differentiate into autoantibody-secreting plasma cells. In SLE, defects in IL-10 secretion permit pre-naïve B cells to promote CD4+ T-cell activation and may thereby enhance the development of autoimmunity.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0687-1) contains supplementary material, which is available to authorized users.  相似文献   

17.
Immune regulation produced by B cells has been attributed to production and secretion of interleukin (IL)-10, which is a characteristic of mouse B1 cells. In view of the widespread clinical use of B-cell depletion therapies in autoimmune and malignant diseases, it is important to monitor the function and fate of regulatory B cells. However, there is no consensus regarding the phenotypic identity of human IL-10+ B cells. Here we show that human CD11b+ B1 cells, one of two recently described subpopulations of B1 cells, spontaneously produce IL-10 and suppress T-cell activation. In view of the capacity of these B cells to either stimulate T-cell proliferation or suppress T-cell activation, CD11b+ B1 cells are considered to be capable of orchestrating elements of immune responsiveness and thus are termed “orchestrator B1 cells,” or “B1orc,” whereas CD11b B1 cells that primarily secrete antibody are termed “secretor B1 cells,” or “B1sec.”  相似文献   

18.
BackgroundThe numbers of circulating regulatory T cells (Tregs) are increased in lepromatous leprosy (LL) but reduced in erythema nodosum leprosum (ENL), the inflammatory complication of LL. It is unclear whether the suppressive function of Tregs is intact in both these conditions.MethodsA longitudinal study recruited participants at ALERT Hospital, Ethiopia. Peripheral blood samples were obtained before and after 24 weeks of prednisolone treatment for ENL and multidrug therapy (MDT) for participants with LL. We evaluated the suppressive function of Tregs in the peripheral blood mononuclear cells (PBMCs) of participants with LL and ENL by analysis of TNFα, IFNγ and IL-10 responses to Mycobacterium leprae (M. leprae) stimulation before and after depletion of CD25+ cells.Results30 LL participants with ENL and 30 LL participants without ENL were recruited. The depletion of CD25+ cells from PBMCs was associated with enhanced TNFα and IFNγ responses to M. leprae stimulation before and after 24 weeks treatment of LL with MDT and of ENL with prednisolone. The addition of autologous CD25+ cells to CD25+ depleted PBMCs abolished these responses. In both non-reactional LL and ENL groups mitogen (PHA)-induced TNFα and IFNγ responses were not affected by depletion of CD25+ cells either before or after treatment. Depleting CD25+ cells did not affect the IL-10 response to M. leprae before and after 24 weeks of MDT in participants with LL. However, depletion of CD25+ cells was associated with an enhanced IL-10 response on stimulation with M. leprae in untreated participants with ENL and reduced IL-10 responses in treated individuals with ENL. The enhanced IL-10 in untreated ENL and the reduced IL-10 response in prednisolone treated individuals with ENL was abolished by addition of autologous CD25+ cells.ConclusionThe findings support the hypothesis that the impaired cell-mediated immune response in individuals with LL is M. leprae antigen specific and the unresponsiveness can be reversed by depleting CD25+ cells. Our results suggest that the suppressive function of Tregs in ENL is intact despite ENL being associated with reduced numbers of Tregs. The lack of difference in IL-10 response in control PBMCs and CD25+ depleted PBMCs in individuals with LL and the increased IL-10 response following the depletion of CD25+ cells in individuals with untreated ENL suggest that the mechanism of immune regulation by Tregs in leprosy appears independent of IL-10 or that other cells may be responsible for IL-10 production in leprosy. The present findings highlight mechanisms of T cell regulation in LL and ENL and provide insights into the control of peripheral immune tolerance, identifying Tregs as a potential therapeutic target.  相似文献   

19.
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.  相似文献   

20.
Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号