首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trimethylamine-N-oxide (TMAO) is a metabolite derived from trimethylamine (TMA), which is first produced by gut microbiota and then oxidized by flavin-containing monooxygenase 3 (FMO3) in the liver. TMAO may contribute to the development of diseases such as atherosclerosis because of its role in regulating lipid metabolism. In this study, we found that high plasma TMAO levels were positively associated with the presence of gallstone disease in humans. We further found increased hepatic FMO3 expression and elevated plasma TMAO level in a gallstone-susceptible strain of mice C57BL/6J fed a lithogenic diet (LD), but not in a gallstone-resistant strain of mice AKR/J. Dietary supplementation of TMAO or its precursor choline increased hepatic FMO3 expression and plasma TMAO levels and induced hepatic canalicular cholesterol transporters ATP binding cassette (Abc) g5 and g8 expression in mice. Up-regulation of ABCG5 and ABCG8 expression was observed in hepatocytes incubated with TMAO in vitro. Additionally, in AKR/J mice fed a LD supplemented with 0.3% TMAO, the incidence of gallstones rose up to 70% compared with 0% in AKR/J mice fed only a LD. This was associated with increased hepatic Abcg5 and g8 expression induced by TMAO. Our study demonstrated TMAO could be associated with increased hepatic Abcg5/g8 expression, biliary cholesterol hypersecretion and gallstone formation.  相似文献   

2.
In the first part of this paper, gut microbial difference of two genotypes mice was researched. The gut microbial community of type 2 diabetes animal model KKAy mice and normal C57BL/6J mice had clear distinctions in DGGE (denaturing gradient gel electrophoresis) profiles. The pairwise similarity coefficient (C s ) was only 26–44 % between KKAy and C57BL/6J, but C s was 82–100 % among same genotypes mice. Thirteen dominant bands were cloned from DGGE profiles to exhibit difference on gut microbial structure further. In the second part of this paper, the influence of hypoglycemic drug Pioglitazone on the gut microbes in KKAy mice was researched by gut microbial diversity analysis and principal component analysis (PCA). The results showed that Pioglitazone reduced the gut microbial diversity slightly and changed gut microbial structure of KKAy mice to that of normal C57BL/6J mice.  相似文献   

3.

Aims

Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO.

Main methods

Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested.

Key findings

Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24 hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased.

Significance

We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.  相似文献   

4.
It has been demonstrated that trimethylamine N-oxide (TMAO) serves as a driver of atherosclerosis, suggesting that reduction of TMAO level might be a potent method to prevent the progression of atherosclerosis. Herein, we explored the role of TMAO in the stability of carotid atherosclerotic plaques and disclosed the underlying mechanisms. The unstable carotid artery plaque models were established in C57/BL6 mice. L-carnitine (LCA) and methimazole (MMI) administration were applied to increase and reduce TMAO levels. Hematoxylin and eosin (H&E) staining, Sirius red, Perl’s staining, Masson trichrome staining and immunohistochemical staining with CD68 staining were used for histopathology analysis of the carotid artery plaque. M1 and M2 macrophagocyte markers were assessed by RT-PCR to determine the polarization of RAW264.7 cells. MMI administration for 2 weeks significantly decreased the plaque area, increased the thickness of the fibrous cap and reduced the size of the necrotic lipid cores, whereas 5-week of administration of MMI induced intraplate hemorrhage. LCA treatment further deteriorated the carotid atherosclerotic plaque but with no significant difference. In mechanism, we found that TMAO treatment impaired the M2 polarization and efferocytosis of RAW264.7 cells with no obvious effect on the M1 polarization. In conclusion, the present study demonstrated that TMAO reduction enhanced the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis.  相似文献   

5.
Inflammatory bowel diseases (IBDs) are complex disorders caused by a combination of environmental, microbial, and genetic factors. Genome-wide association studies in humans have successfully identified multiple genes and loci associated with disease susceptibility, but the mechanisms by which these loci interact with each other and/or with environmental factors (i.e., intestinal microbiota) to cause disease are poorly understood. Helicobacter hepaticus-induced intestinal inflammation in mice is an ideal model system for elucidating the genetic basis of IBD susceptibility in a bacterially induced system, as there are significant differences in H. hepaticus-induced disease susceptibility among inbred mouse strains. Infected A/J mice develop acute overexpression of proinflammatory cytokines followed 2?C3?months later by chronic cecal inflammation, whereas infected C57BL/6 mice fail to develop cecal inflammation or increased cytokine expression. The goal of this project was to use quantitative trait locus (QTL) mapping to evaluate genetic factors that contribute to the differential disease susceptibility between these two mouse strains. Using acute cecal IL-12/23p40 expression as a biomarker for disease susceptibility, QTL analysis of H. hepaticus-infected F2 mice revealed involvement of multiple loci. The loci with the strongest association were located on Chromosome 3 and Chromosome 17, with logarithm of odds (LOD) scores of 6.89 and 3.09, respectively. Cecal expression of IL-12/23p40 in H. hepaticus-infected C57BL/6J-Chr3A/J/NaJ chromosome substitution mice had an intermediate phenotype, significantly higher than in resistant C57BL/6 but lower than in susceptible A/J mice, confirming the importance of this locus to the immune response to H. hepaticus infection.  相似文献   

6.
To identify genes controlling plasma HDL and triglyceride levels, quantitative trait locus (QTL) analysis was performed in one backcross, (NZO/H1Lt × NON/LtJ) × NON/LtJ, and three intercrosses, C57BL/6J × DBA/2J, C57BL/6J × C3H/HeJ, and NZB/B1NJ × NZW/LacJ. HDL concentrations were affected by 25 QTL distributed on most chromosomes (Chrs); those on Chrs 1, 8, 12, and 16 were newly identified, and the remainder were replications of previously identified QTL. Triglyceride concentrations were controlled by nine loci; those on Chrs 1, 2, 3, 7, 16, and 18 were newly identified QTL, and the remainder were replications. Combining mouse crosses with haplotype analysis for the HDL QTL on Chr 18 reduced the list of candidates to six genes. Further expression analysis, sequencing, and quantitative complementation testing of these six genes identified Lipg as the HDL QTL gene on distal Chr 18. The data from these crosses further increase the ability to perform haplotype analyses that can lead to the identification of causal lipid genes.  相似文献   

7.
A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation.  相似文献   

8.
Choline is an essential nutrient required for various biological processes. Eggs, dairy, and meat are rich in phosphatidylcholine (PC), whereas cereal and legumes are rich in free choline. Excess dietary choline leads to increase plasma trimethylamine N-oxide (TMAO). Epidemiological studies suggest that plasma TMAO is a biomarker for atherosclerosis and it has been suggested that a lower intake of eggs and meat would reduce choline consumption and thus reduce atherosclerosis development. To investigate whether the form of dietary choline influences atherosclerosis development in Ldlr−/−, we randomly fed Ldlr−/−male mice (aged 8 – 10 wk) one of the three 40% (calories) high fat diets (with 0.5% w/w of cholesterol): Control (0.1% w/w free-choline, CON), choline-supplemented (0.4% free-choline, CS), or PC-supplemented (0.1% free-choline and 0.3% choline from PC, PCS). After 12-wk of dietary intervention, the animals were euthanized and tissues and blood collected. Aortic atherosclerotic plaque area, plasma choline, lipid metabolites, and spleen and peripheral blood cell phenotypes were quantified. Surprisingly, the PCS group had significantly lower atherosclerotic lesions while having 2-fold higher plasma TMAO levels compared with both CON and CS groups (P<0.05). In the fasting state, we found that PCS decreased plasma very low-density lipoprotein-cholesterol (VLDL-C) and apolipoprotein B48 (APOB48), and increased plasma high-density lipoprotein-cholesterol (HDL-C). However, very low-density lipoprotein (VLDL) secretion was not affected by dietary treatment. We observed lower levels of circulating pro-atherogenic chemokines in the PCS group. Our study suggests that increased dietary PC intake does not induce a pro-atherogenic phenotype.  相似文献   

9.
The Kunming (KM) mouse is a closed colony mouse strain widely used in Chinese pharmacology, toxicology, and microbiology research laboratories. However, few studies have examined human flora-associated (HFA) microbial communities in KM mice. In this study, HFA models were built from germ-free KM and C57BL/6J mouse strains, and gut microbial diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. We found that the two strains of HFA mice were significantly different based on the UPGMA dendrogram and the Richness index, but dice similarity coefficients of mouse replicates were not significantly different between HFA-KM and HFA-C57BL/6J. Most of the dominant phyla of human gut microflora could be transferred into the guts of the two mouse strains. However, the predominant genus that formed in HFA-KM was Clostridium sp. and that in HFA-C57BL/6J was Blautia sp. These results imply that genotypes difference between the two mice strains is a critical factor in shaping the intestinal microflora. However, genetic differences of individuals within KM mouse populations failed to lead to individual difference in microflora. Successful generation of HFA-KM mice will facilitate studies examining how diet affects gut microbial structure, and will enable comparative studies for uncovering genetic factors that shape gut microbial communities.  相似文献   

10.
Summary 3H or14C labeled tracers were used to investigate the metabolism of trimethylamine (TMA), trimethylamine oxide (TMAO), choline, and betaine in free swimming kelp bass (Paralabrax clathratus). An indwelling cannula in the ventral aorta was used to administer tracer and withdraw blood samples. The concentrations of TMA and TMAO were determined in liver, muscle, and plasma. The TMA liver content is higher than that of muscle (0.85 vs 0.01 moles/g wet tissue) while the amount of TMAO in muscle greatly exceeds its liver concentration (60 vs 0.04 moles/g wet tissue). Prolonged fasting (21 and 75 days) or feeding the fish a squid diet containing high levels of TMAO did not alter the tissue concentrations of TMA or TMAO, suggesting that these compounds are endogenous in origin and that their tissue concentrations are subject to regulation. Comparison of the radiospecific activities of TMA and TMAO, and the administered TMA tracer suggest that TMA is channled directly to TMAO in the liver without equilibration in the hepatic TMA pool. The conversion kinetics of TMA to TMAO and the distribution of these amines in liver and muscle with time suggest that labeled TMA is rapidly taken up into a sequestered pool from which it is slowly released, oxidized to TMAO in the liver, and then transported via the circulation to the muscle mass. The location of this proposed sequestered TMA pool was not determined. Experiments with labeled choline and betaine suggest that these compounds are interconverted in the liver and that enzymes are present for conversion of choline betaine TMA TMAO. Labeled dimethylamine (DMA) was not metabolized and is, therefore, probably not a precursor of TMA and TMAO. [14C]Trimethylamine (TMA) was also used to investigate the possible role of trimethylamine oxide (TMAO) as an osmoregulatory compound in migrating prespawning cannulated Pacific pink salmon (Oncorhynchus gorbuscha) taken from marine or fresh water environments. Marine and fresh water salmon oxidized administered [14C]TMA to TMAO; labeled metabolites other than TMA and TMAO were not detected. Four hours after [14C]TMA injection about 10% of the administered dose was present in muscle as labeled TMAO and about 33% as TMA. Unlike our finding in kelp bass, [14C]TMAO was not recovered in liver, although low amounts of labeled TMA were found (0.4% of administered dose). Labeled TMA and TMAO, however, were detected in liver after [14C]betaine adminstration to a marine salmon, indicating that TMA-mono-oxygenase is present in salmon liver. The presence of labeled choline indicates that choline and betaine are interconverted as in kelp bass. The amount of [14C]TMA oxidized to [14C]TMAO and then accumulated in the muscle mass is the same in marine and fresh water salmon, as is the amount of chemical TMAO present (4.6 moles/g muscle).  相似文献   

11.
Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.  相似文献   

12.
Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual’s microbiota to ferment FOPS.  相似文献   

13.
A region on mouse distal chromosome 1 (Chr. 1) that is highly enriched in quantitative trait loci (QTLs) controlling neural and behavioral phenotypes overlaps with the peak region of a major obesity QTL (Nob3.38), which we identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6). By positional cloning we recently identified a microdeletion within this locus causing the disruption of Ifi202b that protects from adiposity by suppressing expression of 11β-Hsd1. Here we show that the Nob3.38 segment also corresponds with the QTL rich region (Qrr1) on Chr. 1 and associates with increased voluntary running wheel activity, Rota-rod performance, decreased grip strength, and anxiety-related traits. The characterization of a subcongenic line carrying 14.2 Mbp of Nob3.38 with a polymorphic region of 4.4 Mbp indicates that the microdeletion and/or other polymorphisms in its proximity alter body weight, voluntary activity, and exploration. Since 27 out of 32 QTL were identified in crosses with B6, we hypothesized that the microdeletion and or adjacent SNPs are unique for B6 mice and responsible for some of the complex Qrr1-mediated effects. Indeed, a phylogenic study of 28 mouse strains revealed a NZO-like genotype for 22 and a B6-like genotype for NZW/LacJ and 4 other C57BL strains. Thus, we suggest that a Nob3.38 interval (173.0–177.4 Mbp) does not only modify adiposity but also neurobehavioral traits by a haplotype segregating with C57BL strains.  相似文献   

14.
Introduction: Increased plasma level of trimethylamine N-oxide (TMAO), a bacterial metabolite of choline, is associated with an increased cardiovascular risk. Indoxyl sulfate, a bacterial metabolite of tryptophan, is thought to be associated with higher mortality in cardiorenal syndrome. We hypothesized that enalapril, a well-established drug reducing cardiovascular mortality, may affect the plasma level of gut bacteria-derived metabolites and gut bacteria composition.

Materials and methods: 14–16-week-old Wistar rats were maintained either on water (controls) or water solution of enalapril for two weeks (5.3 or 12.6?mg/kg b.w.). Blood plasma and urine were analyzed for the concentration of TMAO and indoxyl sulfate using liquid chromatography coupled with triple-quadrupole mass spectrometry. Gut bacteria composition was analyzed with 16S rRNA gene sequence analysis.

Results: Rats treated with enalapril showed a significantly lower plasma TMAO level and a trend towards higher 24?h urine excretion of TMA and TMAO. Plasma indoxyl level was similar between the groups. There was no significant difference between the groups in gut bacteria composition.

Conclusions: Enalapril decreases rat plasma TMAO, but does not affect the plasma level of indoxyl sulfate and gut bacteria composition. The enalapril-induced decrease in plasma TMAO level may be of therapeutic and diagnostic importance.  相似文献   

15.
Lipopolysaccharides (LPSs) released by gut microbiota are correlated with the pathophysiology of osteoarthritis (OA). Exercise remodels the composition of gut microbiota. The present study investigated the hypothesis that wheel-running exercise prevents knee OA induced by high-fat diet (HFD) via reducing LPS from intestinal microorganisms. Male C57BL/6 J mice were treated with sedentary or wheel-running exercise, standard diet (13.5% kcal) or HFD (60% kcal), berberine or not according to their grouping. Knee OA severity, blood and synovial fluid LPS, cecal microbiota, and TLR4 and MMP-13 expression levels were determined. Our findings reveal that HFD treatment decreased gut microbial diversity. Increase in endotoxin-producing bacteria, decrease in gut barrier-protecting bacteria, high LPS levels in the blood and synovial fluid, high TLR4 and MMP-13 expression levels, and severe cartilage degeneration were observed. By contrast, voluntary wheel running caused high gut microbial diversity. The gut microbiota were reshaped, LPS levels in the blood and synovial fluid and TLR4 and MMP-13 expression levels were low, and cartilage degeneration was ameliorated. Berberine treatment reduced LPS levels in the samples, but decreased the diversity of intestinal flora with similar changes to that caused by HFD. In conclusion, unlike taking drugs, exercising can remodel gut microbial ecosystems, reduce the circulating levels of LPS, and thereby contribute to the relief of chronic inflammation and OA. Our findings showed that moderate exercise is a potential therapeutic approach for preventing and treating obesity-related OA.  相似文献   

16.
Intermedin (IMD) is a recently discovered vasodilator peptide. We studied the role of IMD in the pathogenesis of atherosclerosis by investigating the ability of exogenous IMD to alter lipid profiles and ameliorate the development of atherogenic-diet induced atherosclerosis in ApoE−/− mice. Ten of eight-week-old male C57BL/6J mice were as control. Thirty of eight-week-old male ApoE−/− mice were fed with an atherogenic diet for 18 weeks. After feeding atherogenic diet for 12 weeks, the mice were equally and randomly divided into three groups. Normal saline was given in group A and C57BL/6J mice. Intermedin was given by mini osmotic pumps at the dosage of 100 ng/kg/h and 500 ng/kg/h in group B and group C respectively. After the treatment of IMD for 6 weeks, aortic ultrasonography of group C showed that IMD prevented the progression of atherosclerotic lesions and the increase of wall thickness in the aorta. Oil-red-O staining of the entire aorta and the atherosclerotic aortic root section showed 2 folds decrease atherogenic plaque (p < 0.05). Serum lipid profiles were measured, compared with the group A, in group C TC and LDL-C levels were decreased by 86.32% and 89.68%, respectively (both p < 0.05), meanwhile, HDL-C level was significantly increased by 74.82% (p < 0.05). These data indicate that exogenous administration of IMD could prevent the progression of atherosclerotic plaque. The possible underlying mechanisms may relate to the improvement of lipid profiles.  相似文献   

17.
In the nematode Caenorhabditis elegans, signals derived from bacteria in the diet, the animal''s major nutrient source, can modulate both behavior and healthspan. Here we describe a dual role for trimethylamine (TMA), a human gut flora metabolite, which acts as a nutrient signal and a neurotoxin. TMA and its associated metabolites are produced by the human gut microbiome and have been suggested to serve as risk biomarkers for diabetes and cardiovascular diseases. We demonstrate that the tyramine receptor TYRA‐3, a conserved G protein‐coupled receptor (GPCR), is required to sense TMA and mediate its responses. TMA activates guanylyl cyclase DAF‐11 signaling through TYRA‐3 in amphid neurons (ASK) and ciliated neurons (BAG) to mediate food‐sensing behavior. Bacterial mutants deficient in TMA production enhance dauer formation, extend lifespan, and are less preferred as a food source. Increased levels of TMA lead to neural damage in models of Parkinson''s disease and shorten lifespan. Our results reveal conserved signaling pathways modulated by TMA in C. elegans that are likely to be relevant for its effects in mammalian systems.  相似文献   

18.
Irradiation with ultraviolet B (UVB; 290–320 nm) initiates systemic immunosuppression of contact hypersensitivity (CHS). UV dose-responses for suppression of CHS to trinitrochlorobenzene were established in 18 strains of inbred mice. Three phenotypes with significantly different susceptibilities to UV suppression were identified. The phenotypes were: high (HI) susceptibility, 50% suppression with 0.7–2.3 kJ/m2 UV (C57BL/6, C57BL/10, and C57L and NZB females); low (LO) susceptibility, 50% suppression with 9.6–12.3 kJ/m2 UV (BALB/c, AKR, SJL and NZW), and intermediate (INT) susceptibility, 50% suppression with 4.7–6.9 kJ/m2 UV (DBA/2, C57BR, C3H/HeJ, C3H/HeN, CBA/N and A/J). UV suppression was not correlated with skin pigmentation or with the magnitude of the CHS response in non-irradiated animals. Major histocompatibility complex (MHC) haplotype was not correlated with UV suppression in MHC congenic strains B10.D2/oSnJ, B10.D2/nSnJ, B10.BR/SgSnJ, and A.BY/SnJ. There were no sex differences in UV suppression in BALB/c, C57BL/6, or NZW animals. In the autoimmune NZB strain, however, male mice (LO) were seven times less sensitive to UV suppression than NZB female mice (HI). Both sexes of (NZB × NZW)F1 and (NZW × NZB)F1 mice were HI, supporting dominance of HI over LO. Thus there are genetic factors and interacting sex-limited factors determining susceptibility to UV suppression. These findings may be of relevance to UV-related diseases such as photosensitive lupus and skin cancer. Correspondence to: F. P. Noonan.  相似文献   

19.
Bacteria of the marine Roseobacter clade are characterised by their ability to utilise a wide range of organic and inorganic compounds to support growth. Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are methylated amines (MA) and form part of the dissolved organic nitrogen pool, the second largest source of nitrogen after N2 gas, in the oceans. We investigated if the marine heterotrophic bacterium, Ruegeria pomeroyi DSS-3, could utilise TMA and TMAO as a supplementary energy source and whether this trait had any beneficial effect on growth. In R. pomeroyi, catabolism of TMA and TMAO resulted in the production of intracellular ATP which in turn helped to enhance growth rate and growth yield as well as enhancing cell survival during prolonged energy starvation. Furthermore, the simultaneous use of two different exogenous energy sources led to a greater enhancement of chemoorganoheterotrophic growth. The use of TMA and TMAO primarily as an energy source resulted in the remineralisation of nitrogen in the form of ammonium, which could cross feed into another bacterium. This study provides greater insight into the microbial metabolism of MAs in the marine environment and how it may affect both nutrient flow within marine surface waters and the flux of these climatically important compounds into the atmosphere.  相似文献   

20.
During recent years, the composition of the gut microbiota (GM) has received increasing attention as a factor in the development of experimental inflammatory disease in animal models. Because increased variation in the GM might lead to increased variation in disease parameters, determining and reducing GM variation between laboratory animals may provide more consistent models. Both genetic and environmental aspects influence the composition of the GM and may vary between laboratory animal breeding centers and within an individual breeding center. This study investigated the variation in cecal microbiota in 8-wk-old NMRI and C57BL/6 mice by using denaturing gradient gel electrophoresis to profile PCR-derived amplicons from bacterial 16S rRNA genes. Comparison of the cecal microbiotas revealed that the similarity index of the inbred C57BL/6Sca strain was 10% higher than that of the outbred Sca:NMRI stock. Comparing C57BL/6 mice from 2 vendors revealed significant differences in the microbial profile, whereas the profiles of C57BL/6Sca mice raised in separate rooms within the same breeding center were not significantly different. Furthermore, housing in individually ventilated cages did not lead to intercage variation. These results show that denaturing gradient gel electrophoresis is a simple tool that can be used to characterize the gut microbiota of mice. Including such characterizations in future quality-control programs may increase the reproducibility of mouse studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号