首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.  相似文献   

2.
3.
It has been suggested that ABCA1 interacts preferentially with lipid-poor apolipoprotein A-I (apoA-I). Here, we show that treatment of plasma with dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles generates prebeta(1)-apoA-I-containing lipoproteins (LpA-I)-like particles similar to those of native plasma. Isolated prebeta(1)-LpA-I-like particles inhibited the binding of (125)I-apoA-I to ABCA1 more efficiently than HDL(3) (IC(50) = 2.20 +/- 0.35 vs. 37.60 +/- 4.78 microg/ml). We next investigated the ability of DMPC-treated plasma to promote phospholipid and unesterified (free) cholesterol efflux from J774 macrophages stimulated or not with cAMP. At 2 mg DMPC/ml plasma, both phospholipid and free cholesterol efflux were increased ( approximately 50% and 40%, respectively) in cAMP-stimulated cells compared with unstimulated cells. Similarly, both phospholipid and free cholesterol efflux to either isolated native prebeta(1)-LpA-I and prebeta(1)-LpA-I-like particles were increased significantly in stimulated cells. Furthermore, glyburide significantly inhibited phospholipid and free cholesterol efflux to DMPC-treated plasma. Removal of apoA-I-containing lipoproteins from normolipidemic plasma drastically reduced free cholesterol efflux mediated by DMPC-treated plasma. Finally, treatment of Tangier disease plasma with DMPC affected the amount of neither prebeta(1)-LpA-I nor free cholesterol efflux. These results indicate that DMPC enrichment of normal plasma resulted in the redistribution of apoA-I from alpha-HDL to prebeta-HDL, allowing for more efficient ABCA1-mediated cellular lipid release. Increasing the plasma prebeta(1)-LpA-I level by either pharmacological agents or direct infusions might prevent foam cell formation and reduce atherosclerotic vascular disease.  相似文献   

4.
The aim of this study is to investigate the capability of an apoA-I mimetic with multiple amphipathic helices to form HDL-like particles in vitro and in vivo. To generate multivalent helices and to track the peptide mimetic, we have constructed a peptibody by fusing two tandem repeats of 4F peptide to the C terminus of a murine IgG Fc fragment. The resultant peptidbody, mFc-2X4F, dose-dependently promoted cholesterol efflux in vitro, and the efflux potency was superior to monomeric 4F peptide. Like apoA-I, mFc-2X4F stabilized ABCA1 in J774A.1 and THP1 cells. The peptibody formed larger HDL particles when incubated with cultured cells compared with those by apoA-I. Interestingly, when administered to mice, mFc-2X4F increased both pre-β and α-1 HDL subfractions. The lipid-bound mFc-2X4F was mostly in the α-1 migrating subfraction. Most importantly, mFc-2X4F and apoA-I were found to coexist in the same HDL particles formed in vivo. These data suggest that the apoA-I mimetic peptibody is capable of mimicking apoA-I to generate HDL particles. The peptibody and apoA-I may work cooperatively to generate larger HDL particles in vivo, either at the cholesterol efflux stage and/or via fusion of HDL particles that were generated by the peptibody and apoA-I individually.  相似文献   

5.
Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with (125)I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-I(Tg)) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P < 0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-I(Tg) mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo. We conclude that ABCA1 is not required for in vivo remodeling of small HDLs to larger HDL subfractions and that the hypercatabolism of normal HDL particles in knockout mice is attributable to a selective catabolism of HDL apoA-I by the kidney.  相似文献   

6.
Recent developments in lipid metabolism have shown the importance of ATP binding cassette transporters (ABCs) in controlling cellular and total body lipid homeostasis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I), whereas ABCG1 and ABCG4 mediate the transport of cholesterol from cells to lipidated lipoproteins. ABCA1, ABCG1, and ABCG4 are all expressed in cholesterol-loaded macrophages, and macrophages from ABCA1 and ABCG1 knockout mice accumulate cholesteryl esters. Here, we show that the lipidated particles generated by incubating cells overexpressing ABCA1 with apoA-I are efficient acceptors for cholesterol released from cells overexpressing either ABCG1 or ABCG4. The cholesterol released to the particles was derived from a cholesterol oxidase-accessible plasma membrane pool in both ABCG1 and ABCG4 cells, which is the same pool of cholesterol shown previously to be removed by high density lipoproteins. ABCA1 cells incubated with apoA-I generated two major populations of cholesterol- and phospholipid-rich lipoprotein particles that were converted by ABCG1 or ABCG4 cells to one major particle population that was highly enriched in cholesterol. These results suggest that ABCG1 and ABCG4 act in concert with ABCA1 to maximize the removal of excess cholesterol from cells and to generate cholesterol-rich lipoprotein particles.  相似文献   

7.
Serum amyloid A (SAA) was markedly increased in the plasma and in the liver upon acute inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) in mice, and SAA in the plasma was exclusively associated with HDL. In contrast, no HDL was present in the plasma and only a small amount of SAA was found in the VLDL/LDL fraction (d < 1.063 g/ml) after the induction of inflammation in ABCA1-knockout (KO) mice, although SAA increased in the liver. Primary hepatocytes isolated from LPS-treated wild-type (WT) and ABCA1-KO mice both secreted SAA into the medium. SAA secreted from WT hepatocytes was associated with HDL, whereas SAA from ABCA1-KO hepatocytes was recovered in the fraction that was >1.21 g/ml. The behavior of apolipoprotein A-I (apoA-I) was the same as that of SAA in HDL biogenesis by WT and ABCA1-KO mouse hepatocytes. Lipid-free SAA and apoA-I both stabilized ABCA1 and caused cellular lipid release in WT mouse-derived fibroblasts, but not in ABCA1-KO mouse-derived fibroblasts, in vitro when added exogenously. We conclude that both SAA and apoA-I generate HDL largely in hepatocytes only in the presence of ABCA1, likely being secreted in a lipid-free form to interact with cellular ABCA1. In the absence of ABCA1, nonlipidated SAA is seemingly removed rapidly from the extracellular space.  相似文献   

8.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

9.
ABCA1 mediates the efflux of cholesterol and phospholipids into apoA-I to form HDL, which is important in the prevention of atherosclerosis. To develop a novel method for the evaluation of HDL formation, we prepared an apoA-I-POLARIC by labeling the specific residue of an apoA-I variant with a hydrophobicity-sensitive fluorescence probe that detects the environmental change around apoA-I during HDL formation. apoA-I-POLARIC possesses the intact ABCA1-dependent HDL formation activity and shows 4.0-fold higher fluorescence intensity in HDL particles than in the lipid-free state. Incubation of apoA-I-POLARIC with ABCA1-expressing cells, but not ABCA1-non-expressing cells, caused a 1.7-fold increase in fluorescence intensity. Gel filtration analysis demonstrated that the increase in fluorescence intensity of apoA-I-POLARIC represents the amount of apoA-I incorporated into the discoidal HDL particles rather than the amount of secreted cholesterol. THP-1 macrophage-mediated HDL formation and inhibition of HDL formation by cyclosporine A could also be measured using apoA-I-POLARIC. Furthermore, HDL formation-independent lipid release induced by microparticle formation or cell death was not detected by apoA-I-POLARIC. These results demonstrate that HDL formation by ABCA1-expressing cells can be specifically detected by sensing hydrophobicity change in apoA-I, thus providing a novel method for assessing HDL formation and screening of the HDL formation modulator.  相似文献   

10.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

11.
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.  相似文献   

12.
13.
The nascent HDL created by ABCA1-mediated efflux of cellular phospholipid (PL) and free (unesterified) cholesterol (FC) to apolipoprotein A-I (apoA-I) has not been defined. To address this issue, we characterized the lipid particles released when J774 mouse macrophages and human skin fibroblasts in which ABCA1 is activated are incubated with human apoA-I. In both cases, three types of nascent HDL containing two, three, or four molecules of apoA-I per particle are formed. With J774 cells, the predominant species have hydrodynamic diameters of approximately 9 and 12 nm. These discoidal HDL particles have different FC contents and PL compositions, and the presence of acidic PL causes them to exhibit alpha-electrophoretic mobility. These results are consistent with ABCA1 located in more than one membrane microenvironment being responsible for the production of the heterogeneous HDL. Activation of ABCA1 also leads to the release of apoA-I-free plasma membrane vesicles (microparticles). These larger, spherical particles released from J774 cells have the same PL composition as the 12 nm HDL and contain CD14 and ganglioside, consistent with their origin being plasma membrane raft domains. The various HDL particles and microparticles are created concurrently, and there is no precursor-product relationship between them. Importantly, a large fraction of the cellular FC effluxed from these cells by ABCA1 is located in microparticles. Collectively, these results show that the products of the apoA-I/ABCA1 interaction include discoidal HDL particles containing different numbers of apoA-I molecules. The cellular PLs and cholesterol incorporated into these nascent HDL particles originate from different cell membrane domains.  相似文献   

14.
It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis.  相似文献   

15.
The mechanism for the assembly of HDL with cellular lipid by ABCA1 and helical apolipoprotein was investigated in hepatocytes. Both HepG2 cells and mouse primary culture hepatocytes produced HDL with apolipoprotein A-I (apoA-I) whether endogenously synthesized or exogenously provided. Probucol, an ABCA1 inactivator, inhibited these reactions, as well as the reversible binding of apoA-I to HepG2. Primary cultured hepatocytes of ABCA1-deficient mice also lacked HDL production regardless of the presence of exogenous apoA-I. HepG2 cells secreted apoA-I into the medium even when ABCA1 was inactivated by probucol, but it was all in a free form as HDL production was inhibited. When a lipid-free apoA-I-specific monoclonal antibody, 725-1E2, was present in the culture medium, production of HDL was suppressed, whether with endogenous or exogenously added apoA-I, and the antibody did not influence HDL already produced by HepG2 cells. We conclude that the main mechanism for HDL assembly by endogenous apoA-I in HepG2 cells is an autocrine-like reaction in which apoA-I is secreted and then interacts with cellular ABCA1 to generate HDL.  相似文献   

16.
It has been suggested that the signal transduction initiated by apolipoprotein A-I (apoA-I) activates key proteins involved in cholesterol efflux. ABCA1 serves as a binding partner for apoA-I, but its participation in apoA-I-induced signaling remains uncertain. We show that the exposure of human fibroblasts to ABCA1 ligands (apolipoproteins and amphipathic helical peptides) results in the generation of intracellular signals, including activation of the small G-protein Cdc42, protein kinases (PAK-1 and p54JNK), and actin polymerization. ApoA-I-induced signaling was abrogated by glyburide, an inhibitor of the ABC transporter family, and in fibroblasts from patients with Tangier disease, which do not express ABCA1. Conversely, induction of ABCA1 expression with the liver X receptor agonist, T0901317, and the retinoid X receptor agonist, R0264456, potentiated apoA-I-induced signaling. Similar effects were observed in HEK293 cells overexpressing ABCA1-green fluorescent protein (GFP) fusion protein, but not ABCA1-GFP (K939M), which fails to hydrolyze ATP, or a nonfunctional ABCA1-GFP with a truncated C terminus. We further found that Cdc42 coimmunoprecipitates with ABCA1 in ABCA1-GFP-expressing HEK293 cells exposed to apoA-I but not in cells expressing ABCA1 mutants. We conclude that ABCA1 transduces signals from apoA-I by complexing and activating Cdc42 and downstream kinases and, therefore, acts as a full apoA-I receptor.  相似文献   

17.
This study uses the mouse to explore the role of ABCA1 in the movement of this cholesterol from the peripheral organs to the endocrine glands for hormone synthesis and liver for excretion. The sterol pool in all peripheral organs was constant and equaled 2,218 and 2,269 mg/kg, respectively, in abca1+/+ and abca1−/− mice. Flux of cholesterol from these tissues equaled the rate of synthesis plus the rate of LDL-cholesterol uptake and was 49.9 mg/day/kg in control animals and 62.0 mg/day/kg in abca1−/− mice. In the abca1+/+ animals, this amount of cholesterol moved from HDL into the liver for excretion. In the abca1−/− mice, the cholesterol from the periphery also reached the liver but did not use HDL. Fecal excretion of cholesterol was just as high in abac1−/− mice (198 mg/day/kg) as in the abac1+/+ animals (163 mg/day/kg), although the abac1−/− mice excreted relatively more neutral than acidic sterols. This study established that ABCA1 plays essentially no role in the turnover of cholesterol in peripheral organs or in the centripetal movement of this sterol to the endocrine glands, liver, and intestinal tract for excretion.  相似文献   

18.
Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.  相似文献   

19.
20.
Nascent HDL is known to be formed by the interaction of apolipoprotein A-I (apoA-I) with transmembrane ABCA1, but the molecular mechanism by which nascent HDL forms is less well understood. Here, we studied how reconstituted high density lipoprotein (rHDL) forms spontaneously on the interaction of apoA-I with model membranes. The formation of rHDL from pure phosphatidylcholine (PC) large unilamellar vesicles (LUVs) proceeded very slowly at 37.0 degrees C, but sphingomyelin (SM) -rich PC/SM LUVs, which are in a gel/liquid-disordered phase (L(d) phase) at this temperature, were rapidly microsolubilized to form rHDL by apoA-I. The addition of cholesterol decreased the rate at which rHDL formed and induced the selective extraction of lipids by apoA-I, which preferably extracted lipids of L(d) phase rather than lipids of liquid-ordered phase. In addition, apoA-I extracted lipids from the outer and inner leaflets of LUVs simultaneously. These results suggest that the heterogeneous interface of the mixed membranes facilitates the insertion of apoA-I and induces L(d) phase-selective but leaflet-nonselective lipid extraction to form rHDL; they are compatible with recent cell works on apoA-I-dependent HDL generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号