首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
I H Brown  J Vinograd 《Biopolymers》1971,10(10):2015-2028
Catenated molecules of closed circular DNA have been isolated from the mitochondrial DNA of HeLs cells. The sedimentation coefficients of several purified species have been investigated. The catenated dimer, made up of two interlocked duplex circles, sediments at 51 S in its superhelical (closed) form. Treatment with pancreatic DNase to relax the duplex circles converts the 51 S doubly closed dimer to a 42 S singly open species, then to a 36 S doubly open catenated dimer. The triply closed trimer sediments at 63 S and is converted to a 45 S triply open form by DNase. Electron microscopy of the DNA samples before and after DNase treatment shows that under the conditions used DNase does not change the catenated nature of the DNA. The measured sedimentation coefficients, have been compared with those estimated from previously proposed correlations of sedimentation coefficient and molecular weight, and with the sedimentation coefficients for catenated DNA presented by Wang. When all the interlocked circles in a catenane are relaxed, the DNA sediments about 5–10% faster than a relaxed multiple-length circular molecule of the same molecular weight. The sedimentation coefficient, 36 S, of the fully relaxed catenated dimer is 1.4 times that of the relaxed monomer.  相似文献   

2.
The Gin DNA-inversion system of bacteriophage Mu normally requires a substrate containing two inverted recombination sites (gix) and an enhancer sequence on the same supercoiled DNA molecule. The reaction mechanism was investigated by separating these sites on catenated rings. Catenanes with the gix sites on one circle and the enhancer on the other recombined efficiently. Thus, the enhancer was fully functional even though it was located in trans to the gix sites. Multiple links between the rings are required for recombination. Multiply linked catenanes with gix sites on separate circles, one of which contained the enhancer, were also efficient substrates. Knotted constructs carrying directly repeated gix sites were recombined. Catenated and knotted substrates must also be supercoiled. These experiments eliminate simple tracking or looping models as explanations for why the enhancer and gix sites must be in cis with standard substrates. Rather, the Gin synaptic complex requires the three sites to be mutually intertwined in a right-handed fashion with a unique polarity of the gix sites. This geometry is achieved by branching of the DNA substrate and requires the energy and structure of supercoiling, catenation, or knotting.  相似文献   

3.
We describe a two-dimensional agarose gel electrophoresis procedure that improves the resolution of knotted DNA molecules. The first gel dimension is run at low voltage, and DNA knots migrate according to their compactness. The second gel dimension is run at high voltage, and DNA knots migrate according to other physical parameters such as shape and flexibility. In comparison with one-dimensional gel electrophoresis, this procedure segregates the knotted DNA molecules from other unknotted forms of DNA, and partially resolves populations of knots that have the same number of crossings. The two-dimensional display may allow quantitative and qualitative characterization of different types of DNA knots simply by gel velocity.  相似文献   

4.
Direct visualization of supercoiled DNA molecules in solution.   总被引:12,自引:3,他引:12       下载免费PDF全文
The shape of supercoiled DNA molecules in solution is directly visualized by cryo-electron microscopy of vitrified samples. We observe that: (i) supercoiled DNA molecules in solution adopt an interwound rather than a toroidal form, (ii) the diameter of the interwound superhelix changes from about 12 nm to 4 nm upon addition of magnesium salt to the solution and (iii) the partition of the linking deficit between twist and writhe can be quantitatively determined for individual molecules.  相似文献   

5.
J C Bearden 《Gene》1979,6(3):221-234
A new theoretical model for the migration of high-molecular-weight, double-stranded DNA on agarose gels is presented. This leads to the prediction that under certain conditions of electrophoresis, a linear relationship will exist between the molecular weight of a DNA molecule, raised to the (-2/3) power, and its electrophoretic mobility. Agarose gel electrophoresis of the fragments of bacteriophage lambda DNA produced by several restriction endonucleases confirms this relationship, and establishes some of the limits on its linearity. For this work, a polyacrylamide slab gel apparatus was modified for use with agarose gels. This apparatus has several advantages over others commercially available for agarose gel electrophoresis, including the abilities to run a larger number of samples at one time, to use lower-concentration gels, and to maintain better temperature stability across the width of the gel. The validation of the relationship developed here between molecular weight and electrophoretic mobility should make this a useful method for determining the molecular weights of DNA fragments.  相似文献   

6.
The Holliday junction is a prominent intermediate in genetic recombination that consists of four double helical arms of DNA flanking a branch point. Under many conditions, the Holliday junction arranges its arms into two stacked domains that can be oriented so that genetic markers are parallel or antiparallel. In this arrangement, two strands retain a helical conformation, and the other two strands effect the crossover between helical domains. The products of recombination are altered by a crossover isomerization event, which switches the strands fulfilling these two roles. It appears that effecting this switch from the parallel conformation by the simplest mechanism results in braiding the crossover strands at the branch point. In previous work we showed by topological means that a short, parallel, DNA double crossover molecule with closed ends did not braid its branch point; however, that molecule was too short to adopt the necessary positively supercoiled topology. Here, we have addressed the same problem using a larger molecule of the same type. We have constructed a parallel DNA double crossover molecule with closed ends, containing 14 double helical turns in each helix between its crossover points. We have prepared this molecule in a relaxed form by simple ligation and in a positively supercoiled form by ligation in the presence of netropsin. The positively supercoiled molecule is of the right topology to accommodate braiding. We have compared the relaxed and supercoiled versions for their responses to probes that include hydroxyl radicals, KMnO4, the junction resolvases endonuclease VII and RuvC, and RuvC activation of KMNO4 sensitivity. In no case did we find evidence for a braid at the crossover point. We conclude that Holliday junctions do not braid at their branch points, and that the topological problem created by crossover isomerization in the parallel conformation is likely to be solved by distributing the stress over the helices that flank the branch point.  相似文献   

7.
A model of possible conformational transitions of supercoiled DNA in vitro in the absence of proteins under the conditions of increasing degree of compaction was developed. A 3993-bp pGEMEX supercoiled DNA immobilized on various substrates (freshly cleaved mica, standard amino mica, and modified amino mica with a hydrophobicity higher than that of standard amino mica) was visualized by atomic force microscopy in air. On the modified amino mica, which has an increased density of surface positive charges, single molecules with an extremely high degree of compaction were visualized in addition to plectonemic DNA molecules. As the degree of DNA supercoiling increased, the length of the first-order superhelical axis of molecules decreased from 570 to 370 nm, followed by the formation of second-and third-order superhelical axes about 280 and 140 nm long, respectively. The compaction of molecules ends with the formation of minitoroids about 50 nm in diameter and molecules of spherical shape. It was shown that the compaction of single supercoiled DNA molecules immobilized on amino mica to the level of minitoroids and spheroids is due to the shielding of mutually repulsing negatively charged phosphate groups of DNA by positively charged amino groups of the amino mica, which has a high charge density of its surface.  相似文献   

8.
The physical chemistry of cruciform structures in supercoiled DNA molecules   总被引:1,自引:0,他引:1  
Inverted repeat DNA sequences extrude cruciform structures when present in negatively supercoiled molecules, stabilised by the release of torsional stress brought about by the negative twist change. We have revealed the presence of cruciform structures by means of enzyme and chemical probing experiments and topological band shift methods. The geometry of cruciform structures has been studied from two points of view. The unpairing of bases in the loop region has been investigated using bisulphite modification, with the result that the central four nucleotides have single-stranded character, and the next pair have only partially single-stranded nature. Gel electrophoretic studies of a pseudo-cruciform structure indicate that the cruciform junction introduces a pronounced bend into the molecule. The dependence of the formation of the ColE1 cruciform upon DNA supercoiling shows that it has a free energy of formation of 18.4 +/- 0.5 kcal mole-1. The kinetics of the extrusion process are complex. Most sequences extrude slowly with considerable temperature coefficients, but the detailed properties are strongly sequence-dependent. One synthetic inverted repeat sequence which we have studied in detail has an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole-1. We discuss possible mechanistic pathways for the extrusion process.  相似文献   

9.
A model of possible conformational transitions of supercoiled DNA in vitro in the absence of proteins under the conditions of increasing degree of compaction was developed. A 3993-bp pGEMEX supercoiled DNA immobilized on various substrates (freshly cleaved mica, standard amino mica, and modified amino mica with a hydrophobicity higher than that of standard amino mica) was visualized by atomic force microscopy in air. On the modified amino mica, which has an increased density of surface positive charges, single molecules with an extremely high degree of compaction were visualized in addition to plectonemic DNA molecules. As the degree of DNA supercoiling increased, the length of the first-order superhelical axis of molecules decreased from 570 to 370 nm, followed by the formation of second- and third-order superhelical axes about 280 and 140 nm long, respectively. The compaction of molecules ends with the formation of minitoroids about 50 nm in diameter and molecules of spherical shape. It was shown that the compaction of single supercoiled DNA molecules immobilized on amino mica to the level of minitoroids and spheroids is due to the shielding of mutually repulsing negatively charged phosphate groups of DNA by positively charged amino groups of the amino mica, which has a high charge density of its surface.  相似文献   

10.
The kinetic properties of cruciform extrusion in supercoiled DNA molecules fall into two main classes. C-type cruciforms extrude in the absence of added salt, at relatively low temperatures, with large activation energies, while S-type cruciforms exhibit no extrusion in the absence of salt, and maximal rates at 50 mM NaCl, with activation energies about one quarter those of the C-type. These diverse properties are believed to reflect two distinct pathways for the extrusion process, and are determined by the nature of the sequences which form the context of the inverted repeat. C-type kinetics are conferred by A + T rich sequences, implying a role of helix stability in the selection. In this study we have shown that: 1. Helix-destabilising solvents (dimethyl formamide and formamide) facilitate extrusion by normally S-type molecules at low temperatures in the absence of salt. 2. C-type extrusion is strongly suppressed by low concentrations (2-4 microM) distamycin, at which concentrations S-type extrusion is enhanced. 3. Some extrusion occurs in a C-type construct in the presence of 50 mM NaCl. This is increased by addition of 3 microM distamycin, under which conditions extrusion becomes effectively S-type. Thus S-type constructs can behave in a quasi-C-type manner in the presence of helix-destabilising solvents, and C-type extrusion is suppressed by binding a compound which stabilises A + T rich regions of DNA. Helix destabilisation leads to C-type behaviour, while helix stabilisation results in S-type properties. These studies demonstrate the influence of contextual helix stability on the selection of kinetic mechanism of cruciform extrusion.  相似文献   

11.
12.
L G Sheflin  S W Spaulding 《Biochemistry》1989,28(13):5658-5664
HMG 1 is known to bind to a variety of DNAs and to unwind nicked and closed circular DNA. We now report evidence that it has a significantly higher unwinding angle on negatively supercoiled DNA than on the other torsional forms. The degree of unwinding observed on nicked circular DNA depends on the purity of the HMG 1 preparation used. HMG 1 from CM-Sephadex has an unwinding angle of 28.8 degrees, compared to 7.2 degrees for the purer preparation obtained from Mono S, suggesting that contaminating strand-separating activity is removed by the additional purification step. The subsequent studies on closed circular forms of DNA were all performed using the purer HMG 1. After preincubation of highly negatively supercoiled DNA (sigma = -0.040) with HMG 1, the DNA-protein mixture was relaxed with Escherichia coli topoisomerase I. At molar ratios of less than 100:1 (HMG 1 to DNA), negatively supercoiled DNA displays a dose-dependent change in the linking number, indicating an unwinding angle of 57.6 degrees. HMG 1 protects 50% of highly negatively supercoiled DNA from E. coli topoisomerase I at a molar ratio of 100:1, and protects all supercoils at a molar ratio of 200:1, indicating saturation of the DNA at this concentration. HMG 1 also protects highly negatively supercoiled DNA from calf thymus topoisomerase I, with an apparent unwinding angle of 57.6 degrees. Moderately negatively supercoiled DNA (sigma = -0.018), but not moderately positively supercoiled DNA (sigma = +0.011), competes for the protective effect of HMG 1 on highly negatively supercoiled DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Covalent binding of osmium tetroxide to negatively supercoiled DNA in vitro initially induces its relaxation, accompanied by a formation of a single denaturation "bubble" per molecule. Binding of further osmium results in DNA overwinding and the appearance of positive supercoils as demonstrated by gel electrophoresis and electron microscopy.  相似文献   

14.
15.
16.
17.
The electrophoretic mobilities of 24 single-stranded DNA oligomers, each containing 26 nucleotide residues, have been measured in polyacrylamide gels and in free solution. The mobilities observed at 20 degrees C differed by approximately 20% in polyacrylamide gels and by approximately 10% in free solution, even though the oligomers contained the same number of bases. Increasing the temperature or adding urea to the solution equalized the mobilities of the oligomers, suggesting that the variable mobilities observed at 20 degrees C are due to the formation of stable secondary structures, most likely hairpins. Thermal melting profiles were measured for eight oligomers in 40 mM Tris acetate buffer. The observed melting temperatures of most oligomers correlated roughly with the mobilities observed at 20 degrees C; however, one oligomer was much more stable than the others. The melting temperatures of four of the oligomers were close to the values predicted by DINAMelt [Markham, N. R., and Zuker, M. (2005) Nucleic Acids Res. 33, W577-W581]; melting temperatures of the other oligomers differed significantly from the predicted values. Thermal melting profiles were also measured for two oligomers as a function of the Tris acetate buffer concentration. The salt concentration dependence of the melting temperatures suggests that 0.15 Tris+ ion per phosphate is released upon denaturation. Because the apparent number of Tris+ ions released is greater than that observed by others for the release of Na+ ions from similar hairpins, the results suggest that DNA hairpins (and, presumably, duplexes) bind more Tris+ ions than Na+ ions in solution.  相似文献   

18.
Supercoiled DNA pGEMEX with length of 3993 nucleotides was immobilized on the different substrates (freshly cleaved mica, standard aminomica and modified aminomica) and visualized by atomic force microscopy. Plectonomically supercoiled DNA molecules as well as molecules with extremely high level of compactization (i.e. molecules with considerably higher supercoiled density values in comparing with experimentally measured and theoretically investigated ones) were visualized on modified aminomica. At the further increasing of the compactization level an axis length of oversupercoiled molecules was decreased from approximately 390 nm to approximately 140 nm and formation of minitoroids of approximately 50 nm diameter and molecules in sphere conformation were observed. Model of possible conformational transitions of supercoiled DNA was proposed basing on the analysis of captured AFM images at the increasing of supercoiling density.  相似文献   

19.
Behavior of supercoiled DNA.   总被引:12,自引:1,他引:12       下载免费PDF全文
We study DNA supercoiling in a quantitative fashion by micromanipulating single linear DNA molecules with a magnetic field gradient. By anchoring one end of the DNA to multiple sites on a magnetic bead and the other end to multiple sites on a glass surface, we were able to exert torsional control on the DNA. A rotating magnetic field was used to induce rotation of the magnetic bead, and reversibly over- and underwind the molecule. The magnetic field was also used to increase or decrease the stretching force exerted by the magnetic bead on the DNA. The molecule's degree of supercoiling could therefore be quantitatively controlled and monitored, and tethered-particle motion analysis allowed us to measure the stretching force acting on the DNA. Experimental results indicate that this is a very powerful technique for measuring forces at the picoscale. We studied the effect of stretching forces ranging from 0.01 pN to 100 pN on supercoiled DNA (-0.1 < sigma < 0.2) in a variety of ionic conditions. Other effects, such as stretching-relaxing hysteresis and the braiding of two DNA molecules, are discussed.  相似文献   

20.
Structure of plectonemically supercoiled DNA   总被引:20,自引:1,他引:19  
Using electron microscopy and topological methods, we have deduced an average structure for negatively supercoiled circular DNA in solution. Our data suggest that DNA has a branched plectonemic (interwound) form over the range of supercoiling tested. The length of the superhelix axis is constant at 41% of the DNA length, whereas the superhelix radius decreases essentially hyperbolically as supercoiling increases. The number of supercoils is 89% of the linking deficit. Both writhe and twist change with supercoiling, but the ratio of the change in writhe to the change in twist is fixed at 2.6:1. The extent of branching of the superhelix axis is proportional to the length of the plasmid, but is insensitive to superhelix density. The relationship between DNA flexibility constants for twisting and bending calculated using our structural data is similar to that deduced from previous studies. The extended thin form of plectonemically supercoiled DNA offers little compaction for cellular packaging, but promotes interaction between cis-acting sequence elements that may be distant in primary structure. We discuss additional biological implications of our structural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号