首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different binding sites of Cks1 are required for p27-ubiquitin ligation   总被引:12,自引:0,他引:12  
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) is targeted for degradation by an SCF(Skp2) ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only mammalian Cks1 binds to Skp2 and promotes the association of Skp2 with p27 phosphorylated on Thr-187. The molecular mechanisms by which Cks1 promotes the interaction of the Skp2 ubiquitin ligase subunit to p27 remained obscure. Here we show that the Skp2-binding site of Cks1 is located on a region including the alpha2- and alpha1-helices and their immediate vicinity, well separated from the other two binding sites. All three binding sites of Cks1 are required for p27-ubiquitin ligation and for the association of Skp2 with Cdk-bound, Thr-187-phosphorylated p27. Cks1 and Skp2 mutually promote the binding of each other to a peptide similar to the 19 C-terminal amino acids of p27 containing phosphorylated Thr-187. This latter process requires the Skp2- and anion-binding sites of Cks1, but not its Cdk-binding site. It is proposed that the Skp2-Cks1 complex binds initially to the C-terminal region of phosphorylated p27 in a process promoted by the anion-binding site of Cks1. The interaction of Skp2 with the substrate is further strengthened by the association of the Cdk-binding site of Cks1 with Cdk2/cyclin E, to which phosphorylated p27 is bound.  相似文献   

2.
A major goal of tumor suppressor research is to neutralize the tumorigenic effects of their loss. Since loss of pRb does not induce tumorigenesis in many types of cells, natural mechanisms may neutralize the tumorigenic effects of pRb loss in these cells. For susceptible cells, neutralizing the tumorigenic effects of pRb loss could logically be achieved by correcting the deregulated activities of pRb targets to render pRb-deficient cells less abnormal. This line of research has unexpectedly revealed that knocking out the pRb target Skp2 did not render Rb1 deficient cells less abnormal but, rather, induced apoptosis in them, thereby completely blocking tumorigenesis in Rb1+/- mice and after targeted deletion of Rb1 in pituitary intermediate lobe (IL). Skp2 is a substrate-recruiting component of the SCFSkp2 E3 biquitin ligase; one of its substrates is Thr187-phosphorylated p27Kip1. A p27T187A knockin (KI) mutation phenocopied Skp2 knockout (KO) in inducing apoptosis following Rb1 loss. Thus, Skp2 KO or p27T187A KI are synthetic lethal with pRb inactivation. Since homozygous p27T187A KI mutations show no adverse effects in mice, inhibiting p27T187 phosphorylation or p27T187p ubiquitination could be a highly therapeutic and minimally toxic intervention strategy for pRb deficiency-induced tumorigenesis.  相似文献   

3.
The Cks or Suc1 proteins are highly conserved small proteins that play remarkably diverse roles in the cell cycle. All Cks homologues have the ability to associate with Cyclin dependent kinases (Cdks) and in many cases this interaction has been shown to be important for function. Here we characterize the null and RNAi knockdown phenotype of the Drosophila Cks1 (Cks85A) gene. Cks85A is essential for viability in Drosophila. Cks85A null animals have reduced overall growth and this correlates with reduced ploidy and impaired DNA replication in endoreplicating cells. Interestingly, Cks85A is also required for the maintenance of diploidy in mitotically cycling cells. The requirement for Cks85A in growth is similar to that of the mammalian Cks1, which was found to interact with the SCFSkp2 ubiquitin ligase. We identified the Drosophila Skp2 gene and generated null alleles. Comparison of these mutants to null mutants for Cks85A reveals a remarkably similar dual requirement in growth and in maintenance of diploidy. We find that Cks85A interacts directly with the SCFSkp2 ubiquitin ligase and genetic evidence indicates that this is its major molecular function. The closely related Cks30A cannot interact with the SCFSkp2 and cannot functionally compensate for loss of Cks85A. We also find that the critical growth promoting and diploidy maintaining functions of Cks85A and Skp2 are independent of known SCFSkp2 substrates, p27 and Cdt1, indicating that other critical substrates remain to be identified.  相似文献   

4.
By keeping the levels of Skp2 and Cks1 low during G1 progression, APC/CCdh1 prevents unscheduled degradation of SCFSkp2 substrates and premature entry into S phase. Thus, APC/CCdh1, a ubiquitin ligase involved in mitotic exit and maintenance of G0/G1 phase, directly controls SCFSKP2, a ubiquitin ligase involved in the regulation of S phase entry.  相似文献   

5.
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.  相似文献   

6.
The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.  相似文献   

7.
p27Kip1 is a cyclin-dependent kinase inhibitor that regulates the G1/S transition. Increased degradation of p27Kip1 is associated with cellular transformation. Previous work demonstrated that the ubiquitin ligases KPC1/KPC2 and SCFSkp2 ubiquitinate p27Kip1 in G1 and early S, respectively. The regulation of these ligases remains unclear. We report here that the USP19 deubiquitinating enzyme interacts with and stabilizes KPC1, thereby modulating p27Kip1 levels and cell proliferation. Cells depleted of USP19 by RNA interference exhibited an inhibition of cell proliferation, progressing more slowly from G0/G1 to S phase, and accumulated p27Kip1. This increase in p27Kip1 was associated with normal levels of Skp2 but reduced levels of KPC1. The overexpression of KPC1 or the use of p27−/− cells inhibited significantly the growth defect observed upon USP19 depletion. KPC1 was ubiquitinated in vivo and stabilized by proteasome inhibitors and by overexpression of USP19, and it also coimmunoprecipitated with USP19. Our results identify USP19 as the first deubiquitinating enzyme that regulates the stability of a cyclin-dependent kinase inhibitor and demonstrate that progression through G1 to S phase is, like the metaphase-anaphase transition, controlled in a hierarchical, multilayered fashion.The ubiquitin proteasome pathway plays essential roles in regulating the cell cycle. The best-defined functions of this pathway in cell cycle regulation are those mediated by the multisubunit ubiquitin protein ligases SKP1-CUL1-F-box (SCF) and the anaphase-promoting complex/cyclosome (APC) (reviewed in reference 25). The functions of the APC in the cell cycle are predominant at the mitosis-anaphase transition, while the activities of SCF-type ubiquitin protein ligase complexes are involved at various steps of the cycle (reviewed in references 21 and 25). One of the best-defined functions of the SCF is mediated by SCFskp2, which plays a vital role in regulating the G1-S transition by ubiquitinating the cyclin-dependent kinase inhibitor p27Kip1, thereby targeting it for degradation by the proteasome (3, 31, 32).The central role of p27Kip1 in restricting cell proliferation is demonstrated by the fact that mice lacking the p27Kip1 gene manifest increased body and organ weights and develop pituitary adenomas (6, 13, 18). In addition, the results of clinical studies suggest that low p27Kip1 levels are associated with increased aggressivity of tumors (1, 28). Unlike the case with the p53 or Rb tumor suppressors, mutation or deletion of p27Kip1 in tumors is rare. Rather, its deregulation in human tumors is due mainly to reduced protein levels, mediated in large part by increased proteolysis (reviewed in reference 21). In support of this, the low p27Kip1 levels seen in tumors are associated with increased levels of Skp2, the substrate recognition subunit of the SCFskp2 ligase. The loss of Skp2 in mice results in p27Kip1 accumulation, and cells from Skp2/ animals contain enlarged nuclei with polyploidy and multiple centrosomes. They also show a reduced growth rate and increased apoptosis (19). Many of the cellular phenotypes observed in Skp2/ mice disappear in Skp2/ p27/ double-mutant mice (14, 20). Thus, the oncogenic nature of Skp2 is largely due to its ability to mediate p27Kip1 degradation.In spite of the clear role of SCFskp2 in mediating the ubiquitination and degradation of p27Kip1, the downregulation of this cyclin-dependent kinase inhibitor proceeds normally in lymphocytes isolated from Skp2−/− mice (8, 21). In addition, in the normal cell cycle, p27Kip1 is also degraded in G1, before the expression of Skp2, which occurs in early S phase (8, 9, 36). Also, p27Kip1 is exported from the nucleus to the cytoplasm in G1, whereas Skp2 is localized in the nucleus (9, 26). These observations suggest the existence of another pathway for the degradation of p27Kip1. Indeed, KPC (Kip1 ubiquitination-promoting complex) was subsequently identified as a novel cytoplasmic ligase complex that interacts with and ubiquitinates p27Kip1 (10). KPC consists of two subunits: KPC1, a 140-kDa RING-finger domain-containing protein, and KPC2, a 50-kDa protein containing a ubiquitin-like domain and two ubiquitin-associated domains.Although the role of ubiquitin protein ligases in the cell cycle has received considerable attention, fewer data are available regarding the roles of deubiquitinating enzymes in the cell cycle (22). We recently described USP19 as a deubiquitinating enzyme that is induced in skeletal muscle atrophying in response to numerous catabolic stimuli. To study its function, we used RNA interference to explore the consequences of depletion of this enzyme in cultured muscle cells. Our early studies indicated that the loss of USP19 interfered with the growth of L6 myoblasts. We have observed similar effects in FR3T3 fibroblasts and have explored the underlying mechanisms of this growth defect.  相似文献   

8.
The cis-trans peptidylprolyl isomerase Pin1 plays a critical role in regulating a subset of phosphoproteins by catalyzing conformational changes on the phosphorylated Ser/Thr-Pro motifs. The phosphorylation-directed ubiquitination is one of the major mechanisms to regulate the abundance of p27Kip1. In this study, we demonstrate that Pin1 catalyzes the cis-trans conformational changes of p27Kip1 and further mediates its stability through the polyubiquitination mechanism. Our results show that the phosphorylated Thr-187-Pro motif in p27Kip1 is a key Pin1-binding site. In addition, NMR analyses show that this phosphorylated Thr-187-Pro site undergoes conformational change catalyzed by Pin1. Moreover, in Pin1 knock-out mouse embryonic fibroblasts, p27Kip1 has a shorter lifetime and displays a higher degree of polyubiquitination than in Pin1 wild-type mouse embryonic fibroblasts, suggesting that Pin1 plays a critical role in regulating p27Kip1 degradation. Additionally, Pin1 dramatically reduces the interaction between p27Kip1 and Cks1, possibly via isomerizing the cis-trans conformation of p27Kip1. Our study thus reveals a novel regulatory mechanism for p27Kip1 stability and sheds new light on the biological function of Pin1 as a general regulator of protein stability.Cellular differentiation and cell cycle inhibition are tightly controlled via sensitive molecular mechanisms. p27Kip1, a member of the Cip/Kip family, is an essential cell cycle inhibitor that functions largely during the G0/G1 phase where it promotes the assembly of the cyclin D1-CDK4 complex and inhibits the kinase activity of the cyclin E-CDK2 complex in the G1-S phase (14). Several review articles have elegantly summarized and discussed the detailed cellular functions of p27Kip1 (16). p27Kip1 is also a phosphoprotein with multiple Ser/Thr phosphorylation sites, including Ser-10, Ser-178, and Thr-187, followed by a proline residue. Hence, these motifs are potential substrate sites for proline-directed kinases (5, 6). Compared with Ser-178, which has not yet been well studied, the phosphorylation of Ser-10 and Thr-187 has been well characterized to be important for the regulation of p27Kip1 function. For instance, Ser-10 has been found to be the major phosphorylation site of p27Kip1 (7) and to play an important role in regulating cell migration (810), although the regulation of Ser-10 phosphorylation is still not completely defined (11, 12).In contrast to Ser-10 and Thr-178, Thr-187 is the best characterized phosphorylation site on p27Kip1 and is known to regulate the complex formation of p27Kip1-cyclin E-CDK2 (12). In addition, it is also widely accepted that Thr-187 plays a crucial role in determining the abundance of mature p27Kip1 proteins. The phosphorylation of Thr-187 directs p27Kip1 to an SCFSkp2 ubiquitin ligase complex (consisting of Skp2-Skp1-Cks1-Cul1-Roc1), which in turn promotes the polyubiquitination and degradation of p27Kip1 (13, 14). The crystal structure of the Skp1-Skp2-Cks1-p27Kip1 phosphopeptide complex shows that p27Kip1 binds both Cks1 and Skp2 and that the C terminus of Skp2 and Cks1 forms the substrate recognition core of the SCF complex (15). Furthermore, the structure of this complex has revealed that the phosphorylation of Thr-187 in p27Kip1 is recognized by the phosphate-binding site of Cks1, indicating that Cks1 is not only a facilitator but also an indispensable component in p27Kip1 degradation machinery (15).Pin1 is a unique peptidyl-prolyl isomerase (PPIase)2 that recognizes only the phosphorylated Ser/Thr motif preceding a proline residue (16). In addition, Pin1 is very prominent in isomerizing the cis-trans conformation of prolyl-peptidyl bonds in its substrates, resulting in either the modification of their function (e.g. c-Jun (17), β-catenin (18), Bax (19), and Notch1 (20)) or modulation of their stability (e.g. cyclin D1 (21), p53 (22, 23), and NF-κB (24)). Loss of Pin1 in mice results in several phenotypes similar to those of cyclin D1-null mice (21) and neuronal degenerative phenotypes (2528), suggesting the conformational changes mediated by Pin1 may be crucial for the normal functioning of cells. Additionally, Pin1 also plays important roles in cancer and other cellular events, which have been extensively discussed in several recent review articles (2933).In this study, we show that Pin1 binds to p27Kip1, mainly through the phosphorylated Thr-187-Pro motif, and causes subsequent prolyl isomerization of this cell cycle protein. Moreover, we also find that Pin1 can protect p27Kip1 from degradation. Importantly, we demonstrate that by catalyzing conformational changes in p27Kip1, Pin1 hinders its association with Cks1, resulting in a reduction of polyubiquitination of p27Kip1 and protecting its degradation by SCFSkp2 complexes. Our results suggest that the cis-trans isomerization catalyzed by Pin1 represents a novel regulatory mechanism during post-phosphorylation of proteins and polyubiquitination-directed degradation pathways.  相似文献   

9.
The cyclin-dependent kinase (CDK) inhibitor p27 is degraded in late G1 phase by the ubiquitin pathway, allowing CDK activity to drive cells into S phase. Ubiquitinylation of p27 requires its phosphorylation at Thr 187 (refs 3, 4) and subsequent recognition by S-phase kinase associated protein 2 (Skp2; refs 5-8), a member of the F-box family of proteins that associates with Skp1, Cul-1 and ROC1/Rbx1 to form an SCF ubiquitin ligase complex. However, in vitro ligation of p27 to ubiquitin could not be reconstituted by known purified components of the SCFSkp2 complex. Here we show that the missing factor is CDK subunit 1 (Cks1), which belongs to the highly conserved Suc1/Cks family of proteins that bind to some CDKs and phosphorylated proteins and are essential for cell-cycle progression. Human Cks1, but not other members of the family, reconstitutes ubiquitin ligation of p27 in a completely purified system, binds to Skp2 and greatly increases binding of T187-phosphorylated p27 to Skp2. Our results represent the first evidence that an SCF complex requires an accessory protein for activity as well as for binding to its phosphorylated substrate.  相似文献   

10.
Precise cell cycle regulation is critical to prevent aberrant cell proliferation and cancer progression. Cks1 was reported to be an essential accessory factor for SCFSkp2, the ubiquitin ligase that targets p27Kip1 for proteasomal degradation; these actions drive mammalian cell transition from G1 to S phase. In this study, we investigated the role played by Cks1 in the growth and progression of human hepatocellular carcinoma (HCC) cells. Silencing Cks1 expression abrogated osteopontin (OPN) expression in a p27Kip1-dependent manner in Huh7 HCC cells. OPN increased the proliferation, migration and invasion of Huh7 cells. Pharmacological inhibitor studies demonstrated that ERK1/2 signaling is responsible mainly for Cks1-mediated OPN expression. Cks1 appears to regulate ERK1/2 signaling through the expression of dual-specificity phosphatase 16 (DUSP16) because both Cks1 knockdown, which leads to DUSP16 upregulation, and DUSP16 overexpression decreased ERK1/2 phosphorylation and the resulting OPN expression. The same is true for the Cks1-mediated increases in p27Kip1, suggesting that Cks1 regulates OPN expression through activating ERK1/2 signaling either by suppressing DUSP16 expression or by a p27Kip1-dependent mechanism. Cks1 and OPN expression levels were significantly higher, but DUSP16 expression levels were significantly lower in HCC tissues than in normal liver tissues. Both Cks1 and OPN expression were negatively correlated with DUSP16 expression, whereas Cks1 expression was positively correlated with OPN expression. Moreover, combined panels for the expression levels of Cks1, DUSP16 and OPN showed significant prognostic power for the risk assessment of HCC patient overall survival. In conclusion, our data propose a novel function for Cks1 as a tumor promoter through the expression of the strongly oncogenic protein OPN in HCC.  相似文献   

11.
We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27kip1(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling.  相似文献   

12.
13.
p27, an important cell cycle regulator, blocks the G(1)/S transition in cells by binding and inhibiting Cdk2/cyclin A and Cdk2/cyclin E complexes (Cdk2/E). Ubiquitination and subsequent degradation play a critical role in regulating the levels of p27 during cell cycle progression. Here we provide evidence suggesting that both Cdk2/E and phosphorylation of Thr(187) on p27 are essential for the recognition of p27 by the SCF(Skp2/Cks1) complex, the ubiquitin-protein isopeptide ligase (E3). Cdk2/E provides a high affinity binding site, whereas the phosphorylated Thr(187) provides a low affinity binding site for the Skp2/Cks1 complex. Furthermore, binding of phosphorylated p27/Cdk2/E to the E3 complex showed positive cooperativity. Consistently, p27 is also ubiquitinated in a similarly cooperative manner. In the absence of p27, Cdk2/E and Cks1 increase Skp2 phosphorylation. This phosphorylation enhances Skp2 auto-ubiquitination, whereas p27 inhibits both phosphorylation and auto-ubiquitination of Skp2.  相似文献   

14.
Proteolysis of cyclin-dependent kinase inhibitor p27 occurs predominantly in the late G1 phase of the cell cycle through a ubiquitin-mediated protein degradation pathway. Ubiquitination of p27 requires the SCFSkp2 ubiquitin ligase and Skp2 F-box binding protein Cks1. The mechanisms by which Skp2 recognizes Cks1 to ubiquitylate p27 remain obscure. Here we show that Asp-331 in the carboxyl terminus of Skp2 is required for its association with Cks1 and ubiquitination of p27. Mutation of Asp-331 to Ala disrupts the interaction between Skp2 and Cks1. Although Asp-331 mutation negates the ability of the Skp1-Cullin-F-box protein (SCF) complex to ubiquitylate p27, such a mutation has no effect on Skp2 self-ubiquitination. A conservative change from Asp to Glu at position 331 of Skp2 does not affect Skp2-Cks1 interaction. Our results revealed a unique requirement for a negatively charged residue in the carboxyl-terminal region of Skp2 in recognition of Cks1 and ubiquitination of p27.  相似文献   

15.
The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity.  相似文献   

16.
The Cks/Suc1 proteins associate with CDK/cyclin complexes, but their precise function(s) is not well defined. Here we demonstrate that Cks1 directs the ubiquitin-mediated proteolysis of the CDK-bound substrate p27Kip1 by the protein ubiquitin ligase (E3) SCF(Skp2). Cks1 associates with the F box protein Skp2 and is essential for recognition of the p27Kip1 substrate for ubiquitination in vivo and in vitro. Using purified recombinant proteins, we reconstituted p27Kip1 ubiquitination activity and show that it is dependent on Cks1. CKS1-/- mice are abnormally small, and cells derived from them proliferate poorly, particularly under limiting mitogen conditions, possibly due to elevated levels of p27Kip1.  相似文献   

17.
Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27Kip1, a principal target of the SCFSkp2 complex. Genetic ablation of p27Kip1 in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27Kip1 by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2-/- MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), largely restored lipid accumulation and PPARγ gene expression in Skp2−/− MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27Kip1 expression.  相似文献   

18.
Objective: Subcellular localization has been shown to play an important role in determining activity and accumulation of p27 protein during cell cycle progression. The purpose of this study was to examine p27 localization and ubiquitylation in relation to E3 ligase expression during adipocyte hyperplasia. Research Methods and Procedures: This study used the murine 3T3‐L1 preadipocyte model to examine p27 regulation during synchronous cell cycle progression. Cell lysates were isolated over time after hormonal stimulation, fractionated to cytosolic and nuclear compartments, and immunoblotted for relative protein determinations. Results: Data presented in this study show that p27 was present in the cytosol and nucleus in density‐arrested preadipocytes and that abundance in both compartments decreased in a phase‐specific manner as preadipocytes synchronously re‐entered the cell cycle during early phases of adipocyte differentiation. Blocking CRM1‐mediated nuclear export did not prevent degradation, nor did it cause nuclear accumulation of p27, suggesting that distinct mechanisms mediating cytosolic and nuclear p27 degradation were involved. Treating preadipocytes with a potent and specific proteasome inhibitor during hormonal stimulation prevented Skp2 accumulation and p27187 phosphorylation, which are essential events for SCFSkp2 E3 ligase activity and nuclear p27 ubiquitylation during S/G2 phase progression. Proteasome blockade also resulted in the first evidence of cytosolic p27 ubiquitylation during late G1 phase as preadipocytes undergo the transition from quiescence to proliferation. Discussion: These data are consistent with the postulate that p27 is ubiquitylated and targeted for degradation by the 26S proteasome in a phase‐specific manner by distinct ubiquitin E3 ligases localized to the cytosol and nucleus during adipocyte hyperplasia.  相似文献   

19.
SCF(Skp2) is a multisubunit E3 ubiquitin ligase responsible for ubiquitination of cell cycle inhibitor p27. Ubiquitination of p27 requires an adapter protein, Cks1, to be in direct association with Skp2. The exact interface between Skp2 and Cks1 has not been elucidated. Here we have reported the definition of the critical functional interface between Skp2 and Cks1. We have identified eight amino acid residues in two discrete regions of Skp2 that are engaged in Cks1 binding. Mutation of any of these eight residues alone or in combination results in the loss of Cks1 association and negates Skp2-dependent p27 ubiquitination. These eight amino acid residues map on the same side of the Skp2 structure and likely constitute a functional binding surface for Cks1. Four of the eight amino acid residues are located in the largely unstructured carboxyl-terminal tail region of Skp2. These results uncovered the specificity of the Skp2-Cks1 interaction and reveal a critical function for the structurally flexible carboxyl-terminal tail region of Skp2 in Cks1 recognition and substrate ubiquitination.  相似文献   

20.
Enhanced degradation of cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is known to be a powerful prognostic marker in many types of human cancers. Human CDK subunit 1 (Cks1) and S-phase kinase associated protein 2 (Skp2) are components of the SCF(Skp2) complex, which acts as a ubiquitin ligase for p27(Kip1). There are no reports about the involvement of Cks1 in the pathogenesis of human cancer. Here we show high expression of Cks1 in non-small cell lung cancers (NSCLCs) using Western blotting and quantitative real-time RT-PCR. The Skp2 mRNA expression level was high in squamous cell carcinomas and was inversely related with the p27(Kip1) protein level in individual clinical samples. In contrast, Cks1 mRNA expression had no such relationship with p27(Kip1), although Cks1 mRNA was significantly elevated in adenocarcinomas. These results suggest that high expression of Skp2 and Cks1 may be involved in the pathogenesis of NSCLCs via different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号