首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone used by over half a million adolescents in the United States for their tissue-building potency and performance-enhancing effects. AAS also affect behavior, including reports of heightened aggression and changes in sexual libido. The expression of sexual and aggressive behaviors is a function of complex interactions among hormones, social context, and the brain, which is extensively remodeled during adolescence. Thus, AAS may have different consequences on behavior during adolescence and adulthood. Using a rodent model, these studies directly compared the effects of AAS on the expression of male sexual and aggressive behaviors in adolescents and adults. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27-41 days of age) or in adulthood (63-77 days of age). The day after the last injection, males were tested for either sexual behavior with a receptive female or agonistic behavior with a male intruder. Adolescent males treated with AAS showed significant increases in sexual and aggressive behaviors relative to vehicle-treated adolescents. In contrast, AAS-treated adults showed significantly lower levels of sexual behavior compared with vehicle-treated adults and did not show heightened aggression. Thus, adolescents, but not adults, displayed significantly higher behavioral responses to AAS, suggesting that the still-developing adolescent brain is more vulnerable than the adult brain to the adverse consequences of AAS on the nervous system and behavior.  相似文献   

2.
Adolescence is a period during which many social behaviors emerge. One such behavior, flank marking, is a testosterone-modulated scent marking behavior that communicates dominance status between adult male Syrian hamsters. Testosterone modulates flank-marking behavior by altering neural transmission of vasopressin within a forebrain circuit. This study tested whether testicular hormones secreted during adolescence play purely a transient activational role in the display of flank-marking behavior, or whether adolescent steroid hormone secretions also cause long-term organizational changes in vasopressin binding within brain regions underlying flank-marking behavior. We tested this hypothesis by manipulating whether testicular secretions were present during adolescent development and then tested for flank-marking behavior and vasopressin receptor binding within the flank-marking neural circuit in young adulthood. Specifically, males were gonadectomized immediately before or after adolescence, replaced with testosterone 6 weeks following gonadectomy in young adulthood, and behavior tested 1 week later. Adult testosterone treatment activated flank-marking behavior only in males that were exposed to testicular hormones during adolescence. In addition, males exposed to testicular hormones during adolescence exhibited significantly less vasopressin receptor binding within the lateral septum than males deprived of adolescent hormones, suggesting that hormone-dependent remodeling of synapses normally occurs in the lateral septum during adolescence. These data highlight the importance of gonadal steroid hormone exposure during adolescence for the organization of neural circuits and social behavior.  相似文献   

3.
Perinatal development is often viewed as the major window of time for organization of steroid‐sensitive neural circuits by steroid hormones. Behavioral and neuroendocrine responses to steroids are dramatically different before and after puberty, suggesting that puberty is another window of time during which gonadal steroids affect neural development. In the present study, we investigated whether the presence of gonadal hormones during pubertal development affects the number of androgen receptor and estrogen receptor α‐immunoreactive (AR‐ir and ERα‐ir, respectively) cells in limbic regions. Male Syrian hamsters were castrated either before or after pubertal development, and 4 weeks later they received a single injection of testosterone or oil vehicle 4 h prior to tissue collection. Immunocytochemistry for AR and ERα was performed on brain sections from testosterone‐treated and oil‐treated males, respectively. Adult males that had been castrated before puberty had a greater number of AR‐ir cells in the medial preoptic nucleus than adult males that had been castrated after puberty. There were no significant differences in ERα‐ir cell number in any of the brain regions examined. The demonstration that exposure to gonadal hormones during pubertal development is associated with reduced AR‐ir in the medial preoptic nucleus indicates that puberty is a period of neural development during which hormones shape steroid‐sensitive neural circuits. © 2000 John Wiley & Sons, Inc. J Neurobiol 44: 361–368, 2000  相似文献   

4.
From the U.S. to Europe and Australia anabolic steroid abuse remains high in the adolescent population. This is concerning given that anabolic steroid use is associated with a higher incidence of pathological anxiety that often appears during withdrawal from use. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that adolescent anabolic/androgenic steroid (AAS) exposure predisposes hamsters to heightened levels of anxiety during AAS withdrawal that is modulated by serotonin (5HT) neural signaling. In the first two sets of experiments, adolescent AAS-treated hamsters were tested for anxiety 21 days after the cessation of AAS administration (i.e., during AAS withdrawal) using the elevated plus maze (EPM), dark/light (DL), and seed finding (SF) tests and then examined for differences in 5HT afferent innervation to select areas of the brain important for anxiety. In the EPM and DL tests, adolescent AAS exposure leads to significant increases in anxiety-like response during AAS withdrawal. AAS-treated hamsters showed long-term reductions in 5HT innervation within several areas of the hamster brain implicated in anxiety, most notably the anterior hypothalamus and the central and medial amygdala. However, no differences in 5HT were found in other anxiety areas, e.g., frontal cortex and lateral septum. In the last experiment, adolescent AAS-treated hamsters were scored for anxiety on the 21st day of AAS withdrawal following the systemic administration of saline or one of three doses of fluoxetine, a selective serotonin reuptake inhibitor. Saline-treated hamsters showed high levels of AAS withdrawal-induced anxiety, while treatment with fluoxetine reduced AAS withdrawal-induced anxiety. These findings indicate that early AAS exposure has potent anxiogenic effects during AAS withdrawal that are modulated, in part, by 5HT signaling.  相似文献   

5.
The interpretation of social cues must change during adolescence in order to promote appropriate social interactions in adulthood. For example, adult, but not juvenile, male Syrian hamsters find female pheromones contained in vaginal sections (VS) rewarding, and only adult hamsters engage in sexual behavior with a receptive female. We previously demonstrated that the rewarding value of VS is both testosterone‐ and dopamine‐dependent. Additionally, VS induces Fos expression throughout the mesocorticolimbic circuit in adult but not juvenile hamsters. In this study, we determined whether or not treatment of juvenile male hamsters with testosterone is sufficient to promote adult‐like neural responses to VS. Juvenile and adult male hamsters were gonadectomized and given empty or testosterone‐filled subcutaneous capsules for 1 week. Hamsters were then exposed to either clean or VS‐containing mineral oil on their nares, and brains were collected 1 h later for immunohistochemistry to visualize Fos and tyrosine hydroxylase immunoreactive cells. Testosterone treatment failed to promote adult‐typical patterns of Fos expression in juvenile hamsters; indeed, in some brain regions, juveniles exposed to VS expressed less Fos compared to age‐matched controls while, as expected, adults exposed to VS expressed greater Fos compared to age‐matched controls. Age‐related changes in tyrosine hydroxylase expression were also observed. These data indicate that testosterone cannot activate the adult‐typical pattern of Fos expression in response to female social cues in prepubertal males, and that additional neural maturation during adolescence is required for adult‐typical mesocorticolimbic responses to female pheromones. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:856–869, 2013  相似文献   

6.
Perinatal development is often viewed as the major window of time for organization of steroid-sensitive neural circuits by steroid hormones. Behavioral and neuroendocrine responses to steroids are dramatically different before and after puberty, suggesting that puberty is another window of time during which gonadal steroids affect neural development. In the present study, we investigated whether the presence of gonadal hormones during pubertal development affects the number of androgen receptor and estrogen receptor alpha-immunoreactive (AR-ir and ER alpha-ir, respectively) cells in limbic regions. Male Syrian hamsters were castrated either before or after pubertal development, and 4 weeks later they received a single injection of testosterone or oil vehicle 4 h prior to tissue collection. Immunocytochemistry for AR and ER alpha was performed on brain sections from testosterone-treated and oil-treated males, respectively. Adult males that had been castrated before puberty had a greater number of AR-ir cells in the medial preoptic nucleus than adult males that had been castrated after puberty. There were no significant differences in ER alpha-ir cell number in any of the brain regions examined. The demonstration that exposure to gonadal hormones during pubertal development is associated with reduced AR-ir in the medial preoptic nucleus indicates that puberty is a period of neural development during which hormones shape steroid-sensitive neural circuits.  相似文献   

7.
Anabolic-androgenic steroids (AAS) are drugs of abuse. Previous studies have shown that male and female hamsters self-administer testosterone (T) and other AAS, suggesting that androgens are reinforcing in a context where athletic performance is irrelevant. AAS are synthetic derivatives of T, which may be aromatizable to estrogen and/or reducible to dihydrotestosterone (DHT). However, we do not know which metabolites of T are reinforcing. To determine if DHT, estradiol (E(2)), or DHT + E(2) are reinforcing, we tested intracerebroventricular (icv) self-administration in male hamsters. The hypothesis was that androgen reinforcement is sensitive to both androgenic and estrogenic T metabolites. If so, hamsters would self-administer DHT, E(2), and DHT + E(2). Twenty four castrated male hamsters (n = 8/group) received icv cannulas and sc T implants for physiologic androgen replacement. One week later, hamsters self-administered DHT (0.1, 1.0, 2.0 microg/microl), E(2) (0.001, 0.01, 0.02 microg/microl), or DHT + E(2), each for 8 days in increasing concentration (4 h/day). Operant chambers were equipped with an active and inactive nose-poke. At the medium concentration, hamsters self-administered DHT (active nose-poke: 47.9 +/- 13.9 responses/4 h vs. inactive: 18.7 +/- 4.8), E(2) (active: 44.8 +/- 14.9 vs. inactive: 16.6 +/- 2.6), and DHT + E(2) (active: 19.1 +/- 2.4 vs. inactive: 10.4 +/- 2.4, P < 0.05). At the highest concentration, males self-administered DHT (active: 28.3 +/- 7.7 vs. inactive: 15.0 +/- 3.5, P < 0.05) and DHT + E(2) (active: 22.6 +/- 3.8 vs. inactive: 11.6 +/- 2.5, P < 0.05), but not E(2). Hamsters did not self-administer the lowest concentrations of DHT, E(2), or DHT + E(2). These results support our hypothesis that both androgenic and estrogenic T metabolites are reinforcing. Together, they do not exert synergistic effects.  相似文献   

8.
The rewarding value of female sexual stimuli develops across puberty, as sexually-naïve adult, but not prepubertal, male hamsters show a conditioned place preference (CPP) for both vaginal secretions and a receptive female. Similarly, only adults show an endogenous testosterone surge when they encounter vaginal secretions. Testosterone by itself can condition a place preference in male rodents. Therefore, Experiment 1 assessed whether the endogenous testosterone surge elicited by vaginal secretions is necessary to show a CPP. Both gonad-intact and gonadectomized, testosterone-treated adult males showed a CPP for vaginal secretions, indicating that the rewarding value of this social cue is independent of an endogenous testosterone surge. However, organizational effects of pubertal testosterone could be necessary for adolescent development of social reward, as pubertal testosterone organizes adult-typical expression of sexual behavior. To investigate this possibility, in Experiment 2, sexually-naïve prepubertal and adult male hamsters were gonadectomized and received testosterone-filled capsules four weeks later. Testing began after two weeks of testosterone replacement. Adult males showed a CPP for both vaginal secretions and a receptive female, whether or not they experienced pubertal testosterone. Thus, the acquisition of positive valence of sexual stimuli is not organized by pubertal testosterone. Taken together, the ability of female sexual stimuli to serve as an unconditioned reward to adult male hamsters is independent of the chemosensory-induced endogenous testosterone surge and also organizational effects of pubertal testosterone. Instead, sexual reward may be dependent either on activational effects of testosterone or gonadal hormone-independent mechanisms.  相似文献   

9.
The medial amygdala (Me), a brain region essential for mating behavior, changes in size during puberty. In pre-, mid-, and late pubertal (21, 35, and 49 days of age) male Syrian hamsters, we examined neuronal structure in Me and protein levels of spinophilin and synaptophysin in the amygdaloid complex for evidence of synaptic plasticity coincident with behavioral and physiological development. Body weight, testes weight, and testosterone levels increased during puberty. Mounting behavior, including ectopic, nonintromittive, and intromittive mounts, also increased. Neuronal structure in the posterodorsal medial amygdala (MePD) was assessed in Golgi-impregnated neurons. Pruning occurred during puberty in the number of dendrites emanating from the cell body and in terminal dendritic spine densities. Approximately half of all MePD neurons analyzed had an axon emanating from a dendrite rather than the cell body. However, prepubertal males were more likely to have the axon emanating from a higher order dendritic segment (secondary or tertiary) than were mid- and late pubertal males. Finally, protein levels in the amygdaloid complex varied with pubertal age. Spinophilin decreased, while synaptophysin and GAPDH protein levels increased. These results suggest that puberty is a period of dramatic synaptic plasticity in Me. Specifically, pruning of dendrites and spines, in combination with axonal changes, is likely to modify the afferent influences and electrophysiological properties of Me neurons. Because the Me is an integral component of a social behavior neural network, these changes may be related not only to sexual behavior, but also to other behaviors that mature during puberty, including aggressive, risk-taking, fear-related, and parental behaviors.  相似文献   

10.
Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). The current study assessed whether adolescent AAS exposure influenced the immunohistochemical localization of glutamic acid decarboxylase (GAD65), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), in areas of hamster brain implicated in aggressive behavior. Hamsters were administered high dose AAS throughout adolescence, scored for offensive aggression, and then examined for differences in GAD65 puncta to regions of the hamster brain important for aggression. When compared with control animals, aggressive AAS-treated hamsters showed significant increases in the area covered by GAD65 immunoreactive puncta in several of these aggression regions, including the anterior hypothalamus, ventrolateral hypothalamus, and medial amygdala. Conversely, aggressive AAS-treated hamsters showed a significant decrease in GAD65-ir puncta in the lateral septum when compared with oil-treated controls. However, no differences in GAD65 puncta were found in other aggression areas, such as the bed nucleus of the stria terminalis and central amygdala. Together, these results support a role for altered GAD65 synthesis and function in adolescent AAS-facilitated offensive aggression.  相似文献   

11.
Elevated circulating testosterone levels are hypothesized to allow male animals to direct resources into territorial and mating behaviors at the expense of reducing paternal care of offspring. For this hypothesis to apply, testosterone must facilitate territorial/mating behaviors and have antagonistic effects on paternal care, but this pattern has only been supported in some, not all, species. I tested whether androgens correlate with aggressive behaviors in male house wrens ( Troglodytes aedon), a double‐brooded species where paternal and aggressive behaviors overlap temporally. House wrens may therefore benefit from having a hormonal mechanism that allows males to rapidly change behavioral states. However, I found no evidence that androgens (testosterone and 5α‐dihydrotestosterone) relate to aggression in house wrens: Androgens did not increase in response to playback, and endogenous‐circulating androgens were not correlated with how aggressively males responded to those playbacks. Moreover, androgen levels were low during the pre‐breeding stage of the second brood, when many males establish new territories and attract new mates. This study adds to a growing body of the literature suggesting that the relationship between circulating androgens and aggressive behavior is more complex than originally thought.  相似文献   

12.
The current study examined acute and long-term effects of anabolic-androgenic steroid (AAS) exposure during puberty on copulation, vocalizations, scent marking, and intermale aggression, both with and without tail pinch, in intact male rats. Animals received 5 mg/kg of testosterone, nandrolone, stanozolol, or vehicle, beginning at puberty. After 5 weeks, behavior tests were performed while continuing AAS injections. AAS treatment was then discontinued. Behaviors were tested during 3-5 weeks, 9-11 weeks, and 15-17 weeks of withdrawal. During AAS administration, stanozolol males showed significant reductions in all behaviors compared with controls, except aggression with tail pinch. Nandrolone treatment significantly reduced vocalizations and scent marking, and testosterone had no significant effect on behavior. During withdrawal, behaviors in stanozolol males recovered to control levels at variable rates: aggression at 4 weeks; mounts, vocalizations, and scent marking at 9 weeks; and ejaculations at 15 weeks of withdrawal. Stanozolol males showed significantly higher levels of tail pinch-induced aggression during every withdrawal test. Nandrolone-treated males scent-marked at control levels by 9 weeks withdrawal but displayed significantly fewer vocalizations and significantly more tail pinch-induced aggression than controls for the entire study. Testosterone-treated males scent-marked significantly below controls at 3 weeks withdrawal and showed significantly more tail pinch-induced aggression at 5 weeks withdrawal. All three AAS significantly increased tail pinch-induced aggression compared with corresponding nontail pinch tests, even at study endpoint. These results suggest that alterations in androgen-dependent behaviors by pubertal AAS exposure can persist long after drug exposure, and some effects may even be permanent.  相似文献   

13.
It has been widely reported that gonadal hormones influence the display of aggression in Syrian hamsters; conversely, much less is known about whether gonadal hormones modulate submissive/defensive behaviors in these animals. Following social defeat, male hamsters no longer display normal territorial aggression but instead display submissive/defensive behavior in the presence of a smaller opponent, a phenomenon we have termed conditioned defeat (CD). The purpose of the present study was to examine the effect of gonadal hormones on the display of CD in male hamsters. In Experiment 1, males were castrated or sham-operated. The castrated males were significantly more submissive following social defeat relative to their intact counterparts. The increased submissive behavior in the castrated males during CD testing was particularly surprising, given the fact that they were attacked significantly less during CD training. In Experiment 2a, males were castrated and given hormone replacement. Castrated males treated with testosterone or dihydrotestosterone displayed significantly less submissive behavior following social defeat than did those treated with cholesterol or estradiol. Finally, in Experiment 2b, there was no effect of hormone replacement on aggressive behavior in non-defeated hamsters suggesting that the decrease in submissive behavior in males treated with dihydrotestosterone or testosterone is specific to being previously defeated. Taken together the data indicate that the presence of androgens reduces the display of submission in defeated male hamsters. More importantly, these findings suggest that androgens may have a protective effect against the development of depression-like or anxiety-like behaviors following exposure to an ethologically relevant stressor.  相似文献   

14.
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI‐induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long‐term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI‐induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 193–202, 2015  相似文献   

15.
Previous observations have indicated that specific behavioral responses to anxiogenic stimuli emerge over adolescent development in male rats and that gonadal androgens during puberty are essential for this emergence. The objective of the current study was to evaluate mechanisms via which androgens might be organizing the brain during adolescence for appropriate mature adaptive responses. Male rats were exposed to fadrozole (an aromatase inhibitor, 5 mg/kg), flutamide (an androgen receptor antagonist, 10 mg/kg), or MK-434 (a 5 alpha-reductase inhibitor, 10 mg/kg) from day 29 to 60 and tested for environment-specific social interaction (SI) at 60 days of age. The emergence of adult-typical SI was impaired by exposure to the aromatase inhibitor and to the antiandrogen, whereas exposure to the 5 alpha-reductase inhibitor was without effect. Peripheral indices of drug effects indicated that the respective mechanisms had been altered by the different compounds. These results suggest that testosterone induction of aromatase is critical for the organization of mature SI behavior in male rats over adolescent development.  相似文献   

16.
BACKGROUND: Social subjugation is a very significant and natural stressor in the animal kingdom. Adult animals defeated and subjugated during establishment of dominance hierarchies or territorial encounters can be highly submissive in future agonistic interactions. While much is know about the biological and behavioral consequences of winning and losing fights in adulthood, little is known about adolescence; a developmental period noted for impulsivity and heightened agonistic behavior. The present studies were undertaken to determine if the behavioral and neuroendocrine consequences of social subjugation are comparable in adolescent versus adult Syrian golden hamsters (Mesocricetus auratus). Male siblings were studied from adolescence into adulthood following exposure to counterbalanced episodes of either a benign stressor, i.e., isolation in a novel cage, or the more severe stressor of social subjugation. RESULTS: As adults, hamsters with a history of social subjugation in adolescence show high levels of aggression toward intruders as compared to siblings subjugated in adulthood. Sibling controls subjugated in adulthood are highly submissive with little or no aggressive behavior. However, when subjugated in adulthood, hamsters with the earlier history of subjugation are no different than their sibling controls, i.e., adult subjugation promotes submissive behavior. Sexual motivation is high in adult hamsters with adolescent subjugation and testosterone levels remained stable over adulthood. In contrast, sibling controls subjugated in adulthood show lower levels of sexual motivation and reduced levels of testosterone. Release of cortisol during agonistic encounters is blunted in animals subjugated in adolescence but not adulthood. Measures of anxiety are reduced in hamsters with adolescent subjugation as compared to their sibling controls. CONCLUSION: These data demonstrate a pronounced difference in behavior and neuroendocrinology between adolescent and adult hamsters in their response to social subjugation and suggest adolescence is a resilient period in development.  相似文献   

17.
Steroid hormones released immediately before and after birth provoke sexual differentiation of neural circuits. Further, steroid hormones secreted during adolescence also exert long lasting effects on the nervous system. Hormones secreted during development may act through two distinct pathways: (1) hormones can directly affect neuron and synapse elimination and (2) endocrine changes in the nervous system may occur secondary to changes in social behaviors. Therefore, a critical period for organization of the nervous system by steroid hormones during adolescence may also be a sensitive period for the effects of social experience. The overall goal of this experiment was to determine whether the opportunity to mate with a sexually receptive female during this adolescent critical period would have enduring effects on behavior and neuronal morphology into adulthood. A second question was to determine the extent to which testosterone mediated the effects of these social interactions on adult outcomes. Compared to sexually inexperienced hamsters and those that experienced sex for the first time in adulthood, hamsters that experienced adolescent sexual experience displayed increased anxiety- and depressive-like behavioral responses. Adolescent sexual experiences decreased the complexity and length of dendrites on prefrontal cortical neurons and increased the expression of the pro-inflammatory cytokine interleukin 1β (IL-1β) in the PFC. In a second experiment, administration of testosterone during the adolescent period largely recapitulated the effects of adolescent sexual experience. These data support the overall hypothesis that a sensitive period extends into adolescence and that salient social stimuli during this time can significantly and persistently alter adult phenotype.  相似文献   

18.
Male sexual behavior is mediated in part by androgens, but in several species, mating is also influenced by estradiol formed locally in the brain by the aromatization of testosterone. The role of testosterone aromatization in the copulatory behavior of male Syrian hamsters is unclear because prior studies are equivocal. Therefore, the present study tested whether blocking the conversion of testosterone to estradiol would inhibit male hamster sexual behavior. Chronic systemic administration of the nonsteroidal aromatase inhibitor Fadrozole (2.0 mg/kg/day) for 5 or 8 weeks did not significantly increase mount latency or reduce mount frequency, intromission frequency, ejaculation frequency, or anogenital investigation relative to levels shown by surgical controls. However, Fadrozole effectively inhibited aromatase activity, as evidenced by the suppression of estrogen-dependent progesterone receptor immunoreactivity in the male hamster brain. The JZB39 anti-progesterone receptor antibody labeled significantly more neurons in brains of sham-treated hamsters than in brains of Fadrozole-treated hamsters. These data suggest that aromatization of testosterone to estradiol is not necessary for normal mating behavior in Syrian hamsters.  相似文献   

19.
Adolescence is a developmental period which the risk of drug and alcohol abuse increases. Since mesolimbic dopaminergic system undergoes developmental changes during adolescence, and this system is involved in rewarding effects of drugs of abuse, we addressed the hypothesis that ethanol exposure during juvenile/adolescent period over-activates mesolimbic dopaminergic system inducing adaptations which can trigger long-term enduring behavioural effects of alcohol abuse. We treated juvenile/adolescent or adult rats with ethanol (3 g/kg) for two-consecutive days at 48-h intervals over 14-day period. Here we show that intermittent ethanol treatment during the juvenile/adolescence period alters subsequent ethanol intake. In vivo microdialysis demonstrates that ethanol elicits a similar prolonged dopamine response in the nucleus accumbens of both adolescent and adult animals pre-treated with multiple doses of ethanol, although the basal dopamine levels were higher in ethanol-treated adolescents than in adult-treated animals. Repeated ethanol administration also down-regulates the expression of DRD2 and NMDAR2B phosphorylation in prefrontal cortex of adolescent animals, but not of adult rats. Finally, ethanol treatment during adolescence changes the acetylation of histones H3 and H4 in frontal cortex, nucleus accumbens and striatum, suggesting chromatin remodelling changes. In summary, our findings demonstrate the sensitivity of adolescent brain to ethanol effects on dopaminergic and glutamatergic neurotransmission, and suggest that abnormal plasticity in reward-related processes and epigenetic mechanisms could contribute to the vulnerability of adolescents to alcohol addiction.  相似文献   

20.
Repeated social subjugation in early puberty lowers testosterone levels. We used hamsters to investigate the effects of social subjugation on male sexual behavior and metabolic activity within neural systems controlling social and motivational behaviors. Subjugated animals were exposed daily to aggressive adult males in early puberty for postnatal days 28 to 42, while control animals were placed in empty clean cages. On postnatal day 45, they were tested for male sexual behavior in the presence of receptive female. Alternatively, they were tested for mate choice after placement at the base of a Y-maze containing a sexually receptive female in one tip of the maze and an ovariectomized one on the other. Social subjugation did not affect the capacity to mate with receptive females. Although control animals were fast to approach females and preferred ovariectomized individuals, subjugated animals stayed away from them and showed no preference. Cytochrome oxidase activity was reduced within the preoptic area and ventral tegmental area in subjugated hamsters. In addition, the correlation of metabolic activity of these areas with the bed nucleus of the stria terminalis and anterior parietal cortex changed significantly from positive in controls to negative in subjugated animals. These data show that at mid-puberty, while male hamsters are capable of mating, their appetitive sexual behavior is not fully mature and this aspect of male sexual behavior is responsive to social subjugation. Furthermore, metabolic activity and coordination of activity in brain areas related to sexual behavior and motivation were altered by social subjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号