首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow cells are multipotent cells. When bone marrow cells were cultured with type I collagen matrix gels, they showed high alkaline phosphatase activity, collagen synthesis, and formed mineralized tissues. Furthermore, cells expressed osteocalcin and bone sialoprotein genes, which are osteoblast-specific genes. These findings indicate that type I collagen matrix gels induce osteoblastic differentiation of bone marrow cells. Type I collagen interacts with the alpha 2 beta 1 integrin receptor on the cell membrane and mediates extracellular signals into cells. DGEA peptide is a cell-binding domain of type I collagen molecule. When collagen-integrin interaction was interrupted by the addition of Asp-Gly-Glu-Ala (DGEA) peptide to the culture, the expression of osteoblastic phenotypes of bone marrow cells was inhibited. Furthermore, anti-alpha 2 integrin antibody, which interacts with alpha subunit of integrin and blocks the binding of integrin with collagen, suppressed the expression of osteoblastic phenotypes. These findings imply that collagen-alpha 2 beta 1 integrin interaction is an important signal for the osteoblastic differentiation of bone marrow cells.  相似文献   

2.
3.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

4.
A growing body of data suggests that the bone marrow stroma contains a population of pluripotent cells capable of differentiating into adipocytes, osteoblasts, and lymphohematopoietic supporting cells. In this work, the murine stromal cell lines BMS2 and +/+ 2.4 have been examined as preadipocytes and adipocytes for evidence of osteoblastic gene expression. Adipocyte differentiation has been quantitated using fluorescence activated cell sorting. Within 7–10 days of adipocyte induction by treatment with glucocorticoids, indomethacin, and methylisobutylxanthine, between 40% to 50% of the cells contain lipid vacuoles and exhibit a characteristic adipocyte morphology. Based on immunocytochemistry, both the adipocytes and preadipocytes express a number of osteoblastic markers; these include alkaline phosphatase, osteopontin, collagen (I, III), bone sialoprotein II, and fibronectin. Based on biochemical assays, the level of alkaline phosphatase expression is not significantly different between preadipocyte and adipocyte cells. However, unlike rat cell lines, dexamethasone exposure causes a dose-dependent decrease in enzyme activity. The steady-state mRNA levels of the osteoblast associated genes varies during the process of adiopogenesis. The relative level of collagen I and collagen III mRNA is lower in adipocyte-induced cells when compared to the uninduced controls. Osteocalcin mRNA is detected in preadipocytes but absent in adipocytes. These data indicate that osteoblastic gene expression is detected in cells capable of undergoing adipocyte differentiation, consistent with the hypothesis that these cell lineages are interrelated. © 1993 Wiley-Liss, Inc.  相似文献   

5.
6.
Primary osteoblasts derived from avian long bone have been evaluated in terms of spatial and temporal expression of known osteoblastic marker proteins during the early phases of cell culture. Confocal imaging of matrix proteins revealed that osteocalcin, bone sialoprotein, osteopontin, and osteonectin were restricted to the cell interior at day 4 of culture; secretion and deposition into the extra-cellular matrix of bone sialoprotein and osteopontin was evident at 8 and 12 days of culture. Osteocalcin and osteonectin were not deposited in the matrix within the timeframe of the study. Total collagen levels produced and alkaline phosphatase activity were substantial by day 4 of culture, and increased from that point 4.0- and 5.5-fold, respectively, by culture day 12. The expression of type I collagen, PTHrP receptor, osteopontin, bone sialoprotein and osteocalcin was followed by Northern blot analysis. Type I collagen and osteopontin mRNA were expressed at constant levels throughout the culture period. Over the 12 days of culture both PTH/PTHrP receptor and bone sialoprotein mRNA expression were found to increase by 2.3- and 2.5-fold, respectively. In contrast, the expression of osteocalcin message decreased by 2.5-fold by day 8 of culture.  相似文献   

7.
Because the development and activity of osteoclasts in bone remodeling is critically dependent on cell-cell and cell-matrix interactions, we used laser confocal microscopy to study the response of osteoclasts to lipopolysaccharide (LPS; 10 microg/ml), parathyroid hormone (PTH; 10(-8) M), and bisphosphonates (BPs; 1-25 microM clodronate or 0.1-2.5 microM risedronate) in cultured neonatal calvaria. Following treatment with LPS or PTH (<48 hr), osteopontin (OPN) and the alphavbeta3 integrin were found colocalized with the actin ring in the sealing zone of actively resorbing osteoclasts. In contrast, non-resorbing osteoclasts in BP-treated cultures showed morphological abnormalities, including retraction of pseudopods and vacuolization of cytoplasm. In the combined presence of LPS and BP, bone-resorbing osteoclasts were smaller and the sealing zone diffuse, reflecting reduced actin, OPN, and beta3 integrin staining. Depth analyses of calvaria showed that the area of resorbed bone was filled with proliferating osteoblastic cells that stained for alkaline phosphatase, collagen type I, and bone sialoprotein, regardless of the presence of BPs. These studies show that confocal microscopy of neonatal calvaria in culture can be used to assess the cytological relationships between osteoclasts and osteoblastic cells in response to agents that regulate bone remodeling in situ, avoiding systemic effects that can compromise in vivo studies and artifacts associated with studies of isolated osteoclasts.  相似文献   

8.
Azithromycin displays immunomodulatory and anti-inflammatory effects in addition to broad-spectrum antimicrobial activity and is used to treat inflammatory diseases, including respiratory and odontogenic infections. Few studies have reported the effect of azithromycin therapy on bone remodeling processes. The aim of this study was to examine the effects of azithromycin on the osteogenic function of osteoblasts using osteoblast-like MC3T3-E1 cells. Cells were cultured in the presence of 0, 0.1, 1, and 10 µg/mL azithromycin, and cell proliferation and alkaline phosphatase (ALPase) activity were determined. In vitro mineralized nodule formation was detected with alizarin red staining. The expression of collagenous and non-collagenous bone matrix protein was determined using real-time PCR or enzyme-linked immunosorbent assays. In cells cultured with 10 µg/mL azithromycin, the ALPase activity and mineralized nodule formation decreased, while the type I collagen, bone sialoprotein, osteocalcin, and osteopontin mRNA expression as well as osteopontin and phosphorylated osteopontin levels increased. These results suggest that a high azithromycin concentration (10 µg/mL) suppresses mineralized nodule formation by decreasing ALPase activity and increasing osteopontin production, whereas low concentrations (≤l.0 µg/mL) have no effect on osteogenic function in osteoblastic MC3T3-E1 cells.  相似文献   

9.
The adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with beta-peptide (conserved sequence 113-125 of the beta subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the alpha-subunits of alpha(1,5)beta(1) and alpha(2)beta(1) integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col, P > 0.001). beta-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100 microM decreased the attachment of UMR106 cells to both matrices (42% to Col, P<0.001and 25% to AGEs-Col, P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%, P > 0.01 and P< 0.001, respectively), but not to AGEs-Col. beta-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both alpha and beta integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the alpha(1,5)beta(1) and alpha(2)beta(1) integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.  相似文献   

10.
It is not known how gene expression of bone extracellular matrix molecules is controlled temporally and spatially, or how it is related with morphological differentiation of osteoblasts during embryonic osteogenesis in vivo. The present study was designed to examine gene expressions of type I collagen, osteonectin, bone sialoprotein, osteopontin, and osteocalcin during mandibular osteogenesis using in situ hybridization. Wistar rat embryos 13–20 days post coitum were used. The condensation of mesenchymal cells was formed in 14-day rat embryonic mandibles and expressed genes of pro-(I) collagen, osteonectin, bone sialoprotein and osteopontin. Cuboidal osteoblasts surrounding the uncalcified bone matrix were seen as early as in 15-day embryonic mandibles, while flat osteoblasts lining the surface of the calcified bone were seen from 16-day embryonic mandibles. Cuboidal osteoblasts expressed pro-1(I) collagen, osteonectin and bone sialoprotein intensely but osteopontin very weakly. In contrast, flat osteoblasts expressed osteopontin very strongly. Osteocytes expressed the extracellular matrix molecules actively, in particular, osteopontin. The present study demonstrated the distinct gene expression pattern of type I collagen, osteonectin, bone sialoprotein, osteopontin and osteocalcin during embryonic mandibular osteogenesis in vivo.  相似文献   

11.
12.
Growth hormone (GH) regulates many of the factors responsible for controlling the development of bone marrow progenitor cells (BMPCs). The aim of this study was to elucidate the role of GH in osteogenic differentiation of BMPCs using GH receptor null mice (GHRKO). BMPCs from GHRKO and their wild-type (WT) littermates were quantified by flow cytometry and their osteogenic differentiation in vitro was determined by cell morphology, real-time RT-PCR, and biochemical analyses. We found that freshly harvested GHRKO marrow contains 3% CD34 (hematopoietic lineage), 43.5% CD45 (monocyte/macrophage lineage), and 2.5% CD106 positive (CFU-F/BMPC) cells compared to 11.2%, 45%, and 3.4% positive cells for (WT) marrow cells, respectively. When cultured for 14 days under conditions suitable for CFU-F expansion, GHRKO marrow cells lost CD34 positivity, and were markedly reduced for CD45, but 3- to 4-fold higher for CD106. While WT marrow cells also lost CD34 expression, they maintained CD45 and increased CD106 levels by 16-fold. When BMPCs from GHRKO mice were cultured under osteogenic conditions, they failed to elongate, in contrast to WT cells. Furthermore, GHRKO cultures expressed less alkaline phosphatase, contained less mineralized calcium, and displayed lower osteocalcin expression than WT cells. However, GHRKO cells displayed similar or higher expression of cbfa-1, collagen I, and osteopontin mRNA compared to WT. In conclusion, we show that GH has an effect on the proportions of hematopoietic and mesenchymal progenitor cells in the bone marrow, and that GH is essential for both the induction and later progression of osteogenesis.  相似文献   

13.
We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype.  相似文献   

14.
15.
Extracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role of Erks in the regulation of human osteoblastic cell function. Human osteoblastic cells were transduced with a pseudotyped retrovirus encoding either a mutated Erk1 protein with a dominant negative action against both Erk1 and Erk2 (Erk1DN cells) or the LacZ protein (LacZ cells) as a control. Both basal and growth factor-stimulated MAPK activity and cell proliferation were inhibited in Erk1DN cells. Expression of Erk1DN protein suppressed both osteoblast differentiation and matrix mineralization by decreasing alkaline phosphatase activity and the deposition of bone matrix proteins. Cell adhesion to collagen, osteopontin, and vitronectin was decreased in Erk1DN cells as compared with LacZ cells. Cell spreading and migration on these matrices were also inhibited. In Erk1DN cells, expression of alphabeta(1), alpha(v)beta(3), and alpha(v)beta(5) integrins on the surface was decreased. Metabolic labeling indicated that the synthesis of these integrins was inhibited in Erk1DN cells. These data suggest that Erks are not only essential for the growth and differentiation of osteoblasts but also are important for osteoblast adhesion, spreading, migration, and integrin expression.  相似文献   

16.
The heterotopic ossification of muscles, tendons, and ligaments is a common problem faced by orthopaedic surgeons. Runx2/Cbfa1 plays an essential role during the osteoblast differentiation and is considered as a molecular switch in osteoblast biology. RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. In this study, we investigated the effect of Runx2/Cbfa1-specific siRNA on osteoblast differentiation and mineralization in osteoblastic cells, and then constructed adenovirus containing siRNA against Runx2/Cbfa1 (Ad-Runx2-siRNA) to inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. Our results showed that the Runx2/Cbfa1-specific siRNA could inhibit the expression of Runx2/Cbfa1 at the level of mRNA and protein. Analysis of the expression of osteoblast maturation genes including type I collagen, osteopontin, bone sialoprotein, and osteocalcin, alkaline phosphatase activity, and matrix mineralization (von kossa) revealed that osteoblast differentiation was inhibited in cultured primary mouse osteoblasts transduced with Ad-Runx2-siRNA. Furthermore, adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 could inhibit the formation of heterotopic ossification induced by BMP4, demineralized bone matrix, and trauma in animal model. It is likely that the inhibition of Runx2/Cbfa1 by RNAi could be developed as a powerful approach to prevent or treat heterotopic ossification.  相似文献   

17.
Objectives: Chitosan is widely used as a scaffold for bone tissue engineering. However, up‐to‐date, no previous detailed study has been conducted to elucidate any mechanism of osteogenesis by chitosan itself. Here, we have evaluated effects of chitosan‐coated tissue culture plates on adhesion and osteoblast differentiation processes of human mesenchymal stem cells (hMSCs), isolated from adult bone marrow. Materials and methods: Tissue culture plates coated with chitosan at different coating densities were used to evaluate the effects on hMSC adhesion and osteoblast differentiation. hMSCs were induced to differentiate into osteoblasts on the chitosan‐coated plates and were evaluated using established techniques: alkaline phosphatase assay, demonstration of presence of calcium and real time PCR. Results: The cells adhered to plates of lower coating density of chitosan, but formed viable cell aggregates at higher coating density (100 μg/sq.cm). Coating density of 25 μg/sq.cm, supporting cell adhesion was chosen for osteoblast differentiation experiments. Differentiating hMSCs showed higher mineral deposition and calcium content on chitosan‐coated plates. Chitosan upregulated genes associated with calcium binding and mineralization such as collagen type 1 alpha 1, integrin‐binding sialoprotein, osteopontin, osteonectin and osteocalcin, significantly. Conclusions: We demonstrate for the first time that chitosan enhanced mineralization by upregulating the associated genes. Thus, the study may help clinical situations promoting use of chitosan in bone mineralization, necessary for healing non‐union fractures and more.  相似文献   

18.
19.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号