首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.  相似文献   

2.
Bulky carcinogen-DNA adducts, including (+)-trans-anti-[BP]-N(2)-dG derived from the reaction of (+)-anti-benzo[a]pyrene diol epoxide with guanine, often block the progression of DNA polymerases. However, when rare bypass of the lesions does occur, they may be misreplicated. Experimental results have shown that nucleotides are inserted opposite the (+)-trans-anti-[BP]-N(2)-dG adduct by bacteriophage T7 DNA polymerase with the order of preference A>T>or=G>C. To gain structural insights into the effects of the bulky adduct on nucleotide incorporation within the polymerase active site, molecular modeling and molecular dynamics simulations were carried out using T7 DNA polymerase to permit the relation of function to structure. We modeled the (+)-trans-anti-[BP]-N(2)-dG adduct opposite incoming dGTP, dTTP and dCTP nucleotides, as well as unmodified guanine opposite its normal partner dCTP as a control, to compare with our previous simulation with dATP opposite the adduct. The modeling required that the (+)-trans-anti-[BP]-N(2)-dG adduct adopt the syn conformation in each case to avoid deranging essential protein-DNA interactions. While the dATP: (+)-trans-anti-[BP]-N(2)-dG pair was well accommodated within the active site of T7 DNA polymerase, dCTP fit poorly opposite the adduct, adopting an orientation perpendicular to the plane of the syn modified guanine during the simulation. Rotation about the glycosidic bond of the dCTP residue to this abnormal position was allowed because only one hydrogen bond between dCTP and the (+)-trans-anti-[BP]-N(2)-dG residue evolved during the simulation, and this hydrogen bond was directly across from the dCTP glycosidic bond. The dTTP and dGTP nucleotides, incorporated with an intermediate preference opposite (+)-trans-anti-[BP]-N(2)-dG, were accommodated reasonably well, but not as stably as the dATP nucleotide, due to a skewed primer-template alignment and more exposed BP moiety, respectively. In addition, the extent of stabilizing interactions between the nascent base-pair in each simulation was correlated positively with the incorporation preference of that particular nucleotide. The dATP nucleotide is accommodated most stably opposite the adduct, with protein-DNA hydrogen bonding interactions and an active-site pocket size that do not deviate significantly from those of the control simulation. The simulations of dTTP and dGTP opposite (+)-trans-anti-[BP]-N(2)-dG exhibited more instability in interactions between the protein and the nascent base-pair than the dATP system. However, the active-site pocket size of the dTTP and dGTP simulations remained stable. The dCTP: (+)-trans-anti-[BP]-N(2)-dG system had the least number of stabilizing interactions, and the active-site pocket of this system increased in size significantly compared to the control and other dNTPs opposite the adduct. These simulations elucidated why A is inserted opposite (+)-trans-anti-[BP]-N(2)-dG most frequently, while T and G are inserted opposite the adduct to an extent intermediate between A and C, and C is most rarely incorporated. Structural rationalization of the incorporation preference opposite (+)-trans-anti-[BP]-N(2)-dG by T7 DNA polymerase contributes to providing a molecular explanation for mutations caused by this carcinogen-DNA adduct in a model system.  相似文献   

3.
4.
DNA polymerase enzymes employ a number of innate fidelity mechanisms to ensure the faithful replication of the genome. However, when confronted with DNA damage, their fidelity mechanisms can be evaded, resulting in a mutation that may contribute to the carcinogenic process. The environmental carcinogen benzo[a]pyrene is metabolically activated to reactive intermediates, including the tumorigenic (+)-anti-benzo[a]pyrene diol epoxide, which can attack DNA at the exocyclic amino group of guanine to form the major (+)-trans-anti-[BP]-N(2)-dG adduct. Bulky adducts such as (+)-trans-anti-[BP]-N(2)-dG primarily block DNA replication, but are occasionally bypassed and cause mutations if paired with an incorrect base. In vitro standing-start primer-extension assays show that the preferential insertion of A opposite (+)-trans-anti-[BP]-N(2)-dG is independent of the sequence context, but the primer is extended preferentially when dT is positioned opposite the damaged base in a 5'-CG*T-3' sequence context. Regardless of the base positioned opposite (+)-trans-anti-[BP]-N(2)-dG, extension of the primer past the lesion site poses the greatest block to polymerase progression. In order to gain insight into primer-extension of each base opposite (+)-trans-anti-[BP]-N(2)-dG, we carried out molecular modeling and 1.25 ns unrestrained molecular dynamics simulations of the adduct in the +1 position of the template within the replicative pol I family T7 DNA polymerase. Each of the four bases was modeled at the 3' terminus of the primer, incorporated opposite the adduct, and the next-to-be replicated base was in the active site with its Watson-Crick partner as the incoming nucleotide. As in our studies of nucleotide incorporation, (+)-trans-anti-[BP]-N(2)-dG was modeled in the syn conformation in the +1 position, with the BP moiety on the open major groove side of the primer-template duplex region, leaving critical protein-DNA interactions intact. The present work revealed that the efficiency of primer-extension past this bulky adduct opposite each of the four bases in the 5'-CG*T-3' sequence can be rationalized by the stability of interactions between the polymerase protein, primer-template DNA and incoming nucleotide. However, the relative stabilization of each nucleotide opposite (+)-trans-anti-[BP]-N(2)-dG in the +1 position (T > G > A > or = C) differed from that when the adduct and partner were the nascent base-pair (A > T > or = G > C). In addition, extension past (+)-trans-anti-[BP]-N(2)-dG may pose a greater block to a high fidelity DNA polymerase than does nucleotide incorporation opposite the adduct because the presence of the modified base-pair in the +1 position is more disruptive to the polymerase-DNA interactions than it is within the active site itself. The dN:(+)-trans-anti-[BP]-N(2)-dG base-pair is strained to shield the bulky aromatic BP moiety from contact with the solvent in the +1 position, causing disruption of protein-DNA interactions that would likely result in decreased extension of the base-pair. These studies reveal in molecular detail the kinds of specific structural interactions that determine the function of a processive DNA polymerase when challenged by a bulky DNA adduct.  相似文献   

5.
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.  相似文献   

6.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

7.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   

8.
9.
R Xu  B Mao  J Xu  B Li  S Birke  C E Swenberg    N E Geacintov 《Nucleic acids research》1995,23(12):2314-2319
The apparent persistence length of enzymatically linearized pIBI30 plasmid DNA molecules approximately 2300 bp long, as measured by a hydrodynamic linear flow dichroism method, is markedly decreased after covalent binding of the highly tumorigenic benzo[a]pyrene metabolite 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE]. In striking contrast, the binding of the non-tumorigenic, mirror-image 7S,8R,9R,10S enantiomer [(-)-anti-BPDE] to DNA has no measurable effect on its alignment in hydrodynamic flow gradients (< or = 2.2% of the DNA bases modified). In order to relate this effect to BPDE-nucleotide lesions of defined stereochemistry, the bending induced by site-specifically placed and stereochemically defined (+)- and (-)-anti-BPDE-N2-dG lesions in an 11mer deoxyoligonucleotide duplex was studied by ligation and gel electrophoresis methods. Out of the four stereochemically isomeric anti-BPDE-N2-deoxyguanosyl (dG) adducts with either (+)-trans, (-)-trans, (+)-cis, and (-)-cis adduct stereochemistry, only the (+)-trans adduct gives rise to prominent bends or flexible hinge joints in the modified oligonucleotide duplexes. Since both anti-BPDE enantiomers are known to bind preferentially to dG (> or = 85%), these observations can account for the differences in persistence lengths of DNA modified with either (+)-anti-BPDE or the chiral (-)-anti-BPDE isomer.  相似文献   

10.
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.  相似文献   

11.
Zhang Y  Wu X  Guo D  Rechkoblit O  Wang Z 《DNA Repair》2002,1(7):559-569
In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N(2)-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polkappa can effectively bypass a template (+)-trans-anti-BPDE-N(2)-dG adduct in an error-free manner. Kinetic parameters indicate that Polkappa bypass of the (-)-trans-anti-BPDE-N(2)-dG adduct was approximately 41-fold more efficient compared to the (+)-trans-anti-BPDE-N(2)-dG adduct. Furthermore, we have found another activity of human Polkappa in response to the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts: extension synthesis from mispaired primer 3' ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polbeta and the purified catalytic subunits of yeast Polalpha, Poldelta, and Pol epsilon right before the lesion. Extension by human Polkappa from the primer 3' G opposite the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polkappa prior to DNA synthesis. Thus, sequence contexts 5' to the lesion strongly affect the fidelity and mechanism of the Polkappa-catalyzed extension synthesis. These results support a dual-function model of human Polkappa in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.  相似文献   

12.
We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.  相似文献   

13.
Alekseyev YO  Romano LJ 《Biochemistry》2002,41(13):4467-4479
The presence of bulky adducts in DNA is known to interfere with DNA replication not only at the site of the lesion but also at positions up to 5 nucleotides past the adduct location. Kinetic studies of primer extension by exonuclease-deficient E. coli DNA polymerase I (Klenow fragment) (KF) when (+)-trans- or (+)-cis-B[a]P-N(2)-dG adducts were positioned in the double-stranded region of the primer-templates showed that both stereoisomers significantly block downstream replication. However the (+)-cis adduct, which causes a stronger inhibition of the nucleotides insertion across from and immediately past the lesion, affected the downstream replication to a much smaller extent than did the (+)-trans adduct, especially when the B[a]P-modified dG was properly paired with a dC. The effects of mismatches across from the adduct and the sequence context surrounding the adduct were also dependent on the stereochemistry of the B[a]P adduct. Thus, the identity of the nucleotide across from the adduct that provided the best downstream replication was different for the (+)-cis and (+)-trans adducts, a factor that might differentially contribute to the mutagenic bypass of these lesions. These findings provide strong direct evidence that the conformations of the (+)-cis and (+)-trans adducts within the active site of KF are significantly different and probably differentially affect the interactions of the polymerase with the minor groove, thereby leading to different replication trends. The stereochemistry of the adduct was also found to differentially affect the sequence-mediated primer-template misalignments, resulting in different consequences during the bypass of the lesion.  相似文献   

14.
The solution structure of an 11-mer DNA duplex, d(CGGTCA*CGAGG) x d(CCTCGTGACCG), containing a 10R adduct at dA* that corresponds to the cis addition of the N(6)-amino group of dA(6) to (+)-(9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene was studied by 2D NMR methods. The NOESY cross-peak patterns indicate that the hydrocarbon is intercalated on the 5'-side of the modified base. This observation is the same as that observed for other oligonucleotides containing (10R)-dA adducts but opposite to that observed for the corresponding (10S)-dA adducts which are intercalated on the 3'-side of the modified base. The hydrocarbon is intercalated from the major groove without significant disruption of either the anti glycosidic torsion angle of the modified residue or the base pairing of the modified residue with the complementary residue on the opposite strand. The ensemble of 10 structures determined exhibits relatively small variations (6-15 degrees) in the characteristic hydrocarbon-base dihedral angles (alpha' and beta') as well as the glycosidic torsion angle chi. These angles are similar to those in a previously determined cis-opened benzo[a]pyrene diol epoxide-(10R)-dA adduct structure. Comparison of the present structure with the cis-opened diol epoxide adduct suggests that the absence of the 7- and 8-hydroxyl groups results in more efficient stacking of the aromatic moiety with the flanking base pairs and deeper insertion of the hydrocarbon into the helix. Relative to normal B-DNA, the duplex containing the present tetrahydroepoxide adduct is unwound at the lesion site, whereas the diol epoxide adduct structure is more tightly wound than normal B-DNA. Buckling of the adducted base pair as well as the C(5)-G(18) base pair that lies immediately above the hydrocarbon is much less severe in the present adducted structure than its cis-opened diol epoxide counterpart.  相似文献   

15.
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.  相似文献   

16.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase eta (Poleta) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Poleta predominantly inserted an A opposite a template (+)- and (-)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Poleta. Error-prone nucleotide insertion by human Poleta was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (-)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Poleta largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Poleta from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5' to the lesion. By combining the nucleotide insertion activity of human Poleta and the extension synthesis activity of human Polkappa, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

17.
18.
We report below on the solution structures of stereoisomeric "fjord" region trans-anti-benzo[c]phenanthrene-N2-guanine (designated (BPh)G) adducts positioned opposite cytosine within the (C-(BPh)G-C).(G-C-G) sequence context. We observe intercalation of the phenanthrenyl ring with stereoisomer-dependent directionality, without disruption of the modified (BPh)G.C base-pair. Intercalation occurs to the 5' side of the modified strand for the 1S stereoisomeric adduct and to the 3' side for the 1R stereoisomeric adduct, with the S and R-trans-isomers related to one another by inversion in a mirror plane at all four chiral carbon atoms on the benzylic ring. Intercalation of the fjord region BPh ring into the helix without disruption of the modified base-pair is achieved through buckling of the (BPh)G.C base-pair, displacement of the linkage bond from the plane of the (BPh)G base, adaptation of a chair pucker by the BPh benzylic ring and the propeller-like deviation from planarity of the BPh phenanthrenyl ring. It is noteworthy that intercalation without base-pair disruption occurs from the minor groove side for S and R-trans-anti BPh-N2-guanine adducts opposite C, in contrast to our previous demonstration of intercalation without modified base-pair disruption from the major groove side for S and R-trans-anti BPh-N6-adenine adducts opposite T. Further, these results on fjord region 1S and 1R-trans-anti (BPh)G adducts positioned opposite C are in striking contrast to earlier research with "bay" region benzo[a]pyrene-N2-guanine (designated (BP)G) adducts positioned opposite cytosine, where 10S and 10R-trans-anti stereoisomers were positioned with opposite directionality in the minor groove without modified base-pair disruption. They also are in contrast to the 10S and 10R-cis-anti stereoisomers of (BP)G adducts opposite C, where the pyrenyl ring is intercalated into the helix with directionality, but the modified base and its partner on the opposite strand are displaced out of the helix. These results are especially significant given the known greater tumorigenic potential of fjord region compared to bay region polycyclic aromatic hydrocarbons. The tumorigenic potential has been linked to repair efficiency such that bay region adducts can be readily repaired while their fjord region counterparts are refractory to repair. Our structural results propose a link between DNA adduct conformation and repair-dependent mutagenic activity, which could ultimately translate into structure-dependent differences in tumorigenic activities. We propose that the fjord region minor groove-linked BPh-N2-guanine and major groove-linked BPh-N6-adenine adducts are refractory to repair based on our observations that the phenanthrenyl ring intercalates into the helix without modified base-pair disruption. The helix is therefore minimally perturbed and the phenanthrenyl ring is not available for recognition by the repair machinery. By contrast, the bay region BP-N2-G adducts are susceptible to repair, since the repair machinery can recognize either the pyrenyl ring positioned in the minor groove for the trans-anti groove-aligned stereoisomers, or the disrupted modified base-pair for the cis-anti base-displaced intercalated stereoisomers.  相似文献   

19.
The effects of bases flanking single bulky lesions derived from the binding of a benzo[a]pyrene 7,8-diol 9,10-epoxide derivative ((+)-7R,8S,9S,10R stereoisomer) to N(2)-guanine (G*) on translesion bypass catalyzed by the Y-family polymerase pol kappa (hDinB1) were examined in vitro. The lesions were positioned near the middle of six different 43-mer 5'-...XG*Y... sequences (X, Y = C, T, or G, with all other bases remaining fixed). The complementary dCTP is preferentially inserted opposite G* in all of the sequences; however, the proportions of other dNTPs inserted varies as a function of X and Y. The dCTP insertion efficiencies, f(ins) = (V(max)/K(m))(ins), are smaller in the XG*Y than in XGY sequences by factors of approximately 50-90 (GG*T and GG*C) or 5000-25000 (TG*G and CG*G). Remarkably, in XG*Y sequences, f(ins) varies by as much as 3 orders of magnitude, being smallest with G flanking the lesions on the 3'-side and highest with G flanking the adducts on the 5'-side. One-step primer extension efficiencies just beyond the lesions (f(ext)) are generally smaller than f(ins) and also depend on base sequence. However, reasonably efficient translesion bypass of the (+)-trans-[BP]-N(2)-dG adducts is observed in all sequences in running-start experiments with full, or nearly full, primer extension being observed under conditions of [dNTP] > K(m). The key features here are the relatively robust values of the kinetic parameters V(max) that are either diminished to a moderate extent or even enhanced in the presence of the (+)-trans-[BP]-N(2)-dG adducts. In contrast to the small effects of the lesions on V(max), the apparent K(m) values are orders of magnitude greater in XG*Y than in the unmodified XGY sequences. Thus the bypass of (+)-trans-[BP]-N(2)-dG adducts under conditions when [dNTP] < K(m) is quite inefficient. These considerations may be of importance in vivo where [dNTP] 相似文献   

20.
Xu P  Oum L  Geacintov NE  Broyde S 《Biochemistry》2008,47(9):2701-2709
The Y-family DNA polymerase Dpo4, from the archaeon bacterium Sulfolobus solfataricus, is a member of the DinB family, which also contains human Pol kappa. It has a spacious active site that can accommodate two templating bases simultaneously, with one of them skipped by the incoming dNTP. Assays of single dNTP insertion opposite a benzo[ a]pyrene-derived N (2)-dG adduct, 10 S(+)- trans- anti-[BP]- N (2)-dG ([BP]G*), reveal that an incoming dATP is significantly preferred over the other three dNTPs in the TG 1*G 2 sequence context. Molecular modeling and dynamics simulations were carried out to interpret this experimental observation on a molecular level. Modeling studies suggest that the significant preference for dATP insertion observed experimentally can result from two possible dATP incorporation modes. The dATP can be inserted opposite the T on the 5' side of the adduct G 1*, using an unusual 5'-slippage pattern, in which the unadducted G 2, rather than G 1*, is skipped, to produce a -1 deletion. In addition, the dATP can be misincorporated opposite the adduct. The 5'-slippage pattern may be generally facilitated in cases where the base 3' to the lesion is the same as the adducted base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号