首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
M C Souroujon  S Carmon  A Safran  S Fuchs 《FEBS letters》1991,288(1-2):222-226
Antibodies to a synthetic peptide corresponding to residues 346-359 of the Torpedo acetylcholine receptor (AChR) gamma subunit, were employed to compare the adult and embryonic receptor. This peptide contains a consensus phosphorylation site for cAMP-dependent protein kinase (PKA). The anti-peptide antibodies discriminated between adult and embryonic AChRs, and reacted preferentially with the adult gamma form. These observed immunological differences did not seem to stem from different phosphorylation states. Our results suggest that the embryonic Torpedo AChR may have a gamma-like subunit that differs from the known adult form of this subunit, at least in the specific region that contains the phosphorylation site for PKA.  相似文献   

3.
Kinetics of unliganded acetylcholine receptor channel gating.   总被引:9,自引:1,他引:9       下载免费PDF全文
Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant.  相似文献   

4.
To study the functional and structural roles of the epsilon subunit in adult muscle acetylcholine receptor (AChR), we have co-expressed the alpha and epsilon subunits of the mouse receptor in transfected fibroblasts. Ligand binding studies suggest that association of epsilon with alpha subunit results in a lower association rate constant for 125I-labeled alpha-bungarotoxin binding than that of the unassembled alpha subunit, approaching that for toxin binding to the AChR. Furthermore, alpha epsilon complexes contain high affinity binding sites for competitive antagonists and agonists not present in the unassembled alpha subunit, but similar to one of the two nonequivalent binding sites in the adult AChR. Structural analysis of alpha epsilon complexes by sucrose gradient velocity centrifugation suggests that some of the complexes formed are trimers or tetramers of alpha and epsilon subunits. Comparison of these data with those previously obtained for alpha gamma complexes suggests that gamma and epsilon have homologous functional roles and identical structural positions in the fetal and adult AChRs, respectively.  相似文献   

5.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

6.
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.  相似文献   

7.
Current folding models for the nicotinic acetylcholine receptor (AChR) predict either four or five transmembrane segments per subunit. The N-terminus of each subunit is almost certainly extracellular. We have tested folding models by determining biochemically the cellular location of an intermolecular disulfide bridge thought to lie at the delta subunit C-terminus. Dimers of AChR linked through the delta-delta bridge were prepared from Torpedo marmorata and T.californica electric organ. The disulfide's accessibility to hydrophilic reductants was tested in a reconstituted vesicle system. In right-side-out vesicles (greater than 95% ACh binding sites outwards), the bridge was equally accessible whether or not vesicles had been disrupted by freeze--thawing or by detergents. Control experiments based on the rate of reduction of entrapped diphtheria toxin and measurements of radioactive reductant efflux demonstrated that the vesicles provide an adequate permeability barrier. In reconstituted vesicles containing AChR dimers in scrambled orientations, right-side-out dimers were reduced to monomers three times more rapidly than inside-out dimers, consistent with the measured rate of reductant permeation. These observations indicate that in reconstituted vesicles the delta-delta disulfide bridge lies in the same aqueous space as the ACh binding sites. They are most easily reconciled with folding models that propose an even number of transmembrane crossing per subunit.  相似文献   

8.
The alpha subunit of the nicotinic acetylcholine receptor (AChR) from Torpedo electric organ and mammalian muscle contains high affinity binding sites for alpha-bungarotoxin and for autoimmune antibodies in sera of patients with myasthenia gravis. To obtain sufficient materials for structural studies of the receptor-ligand complexes, we have expressed part of the mouse muscle alpha subunit as a soluble, secretory protein using the yeast Pichia pastoris. By testing a series of truncated fragments of the receptor protein, we show that alpha211, the entire amino-terminal extracellular domain of AChR alpha subunit (amino acids 1-211), is the minimal segment that could fold properly in yeast. The alpha211 protein was secreted into the culture medium at a concentration of >3 mg/liter. It migrated as a 31-kDa polypeptide with N-linked glycosylation on SDS-polyacrylamide gel. The protein was purified to homogeneity by isoelectric focusing electrophoresis (pI 5.8), and it appeared as a 4.5 S monomer on sucrose gradient at concentrations up to 1 mm ( approximately 30 mg/ml). The receptor domain bound monoclonal antibody mAb35, a conformation-specific antibody against the main immunogenic region of the AChR. In addition, it formed a high affinity complex with alpha-bungarotoxin (k(D) 0.2 nm) but showed relatively low affinity to the small cholinergic ligand acetylcholine. Circular dichroism spectroscopy of alpha211 revealed a composition of secondary structure corresponding to a folded protein. Furthermore, the receptor fragment was efficiently (15)N-labeled in P. pastoris, and proton cross-peaks were well dispersed in nuclear Overhauser effect and heteronuclear single quantum coherence spectra as measured by NMR spectroscopy. We conclude that the soluble AChR protein is useful for high resolution structural studies.  相似文献   

9.
Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.  相似文献   

10.
We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA.  相似文献   

11.
The limited proteolysis of human low-molecular-mass kininogen by kallikrein from tissue sources has been studied. Porcine pancreatic kallikrein applied in catalytic amounts split the kininogen molecule (apparent mass 68 kDa) with the release of lysyl-bradykinin (1 kDa). This generated a nicked kininogen molecule with a heavy chain and light chain interconnected via disulfide bridging. Following reductive cleavage of the disulfide bonds, the heavy chain of apparent mass 62 kDa was isolated by preparative sodium dodecyl sulfate electrophoresis, and the light chain of 5 kDa by reversed-phase high-performance liquid chromatography. The light chain was found to be composed of 38 amino acids with a single half-cystine residue. Amino-terminal sequence analysis revealed that the light chain is derived from the carboxy terminus of the kininogen molecule [Lottspeich et al. (1984) Eur. J. Biochem. 142, 227-232]. Immunological characterization of the isolated L chain indicated that it harbours antigenic site(s) unique for low-Mr kininogen as well as sites common to high-Mr and low-Mr kininogen.  相似文献   

12.
  相似文献   

13.
The nicotinic acetylcholine receptor (nAChR) is an oligomeric transmembrane glycoprotein consisting of four homologous subunits in stoichiometry of alpha 2, beta (gamma or epsilon). Recently the presence of a novel exon (P3A) in human alpha AChR gene has been reported. Two variants of the human alpha subunit arise from alternate RNA splicing, one with and one without the P3A exon. However, the evolutionary origin of the P3A exon and the regulation of the expression of the two variants in human muscle and non-human tissues is currently unknown. Examination of genomic DNA from various species shows that the P3A exon sequence is present only in hominoids, old world and new world primates species and is absent in the muscle cDNA or genomic DNA from rat, mouse or dog, indicating that P3A exon is evolutionary conserved for at least 50 million years. The P3A+ variant of alpha subunit was found to be constitutively expressed in skeletal muscle, brain, heart, kidney, liver, lung and thymus, while P3A-variant was differentially expressed only in skeletal muscle. Thus it appears that the P3A+ variant is generated by 'default' selection by the splicing machinery, while expression of the P3A- variant is regulated by tissue-specific factors in the skeletal muscle. Mechanisms regulating differential expression of the alpha subunit variants may be pertinent to the pathophysiology of myasthenia gravis.  相似文献   

14.
K Sakimura  T Morita  E Kushiya  M Mishina 《Neuron》1992,8(2):267-274
The presence and primary structure of a novel subunit of the mouse glutamate receptor channel, designated as gamma 2, have been revealed by cloning and sequencing the cDNA. The gamma 2 subunit has structural characteristics common to the neurotransmitter-gated ion channel family and shares a high amino acid sequence identity with the rat KA-1 subunit, thus constituting the gamma subfamily of the glutamate receptor channel. Expression of the gamma 2 subunit together with the beta 2 subunit in Xenopus oocytes yields functional glutamate receptor channels selective for kainate.  相似文献   

15.
The high-affinity receptor for IgE is a tetrameric complex of subunits of the type alpha beta gamma 2. We report here conformational studies of the intact gamma subunit in trifluoroethanol and water/liposomes by circular dichroism and Fourier-transform infrared (FTIR) spectroscopy. In trifluoroethanol, the FTIR amide I' frequencies were consistent with two predominant conformational components, the beta-turn and alpha-helix, whilst in liposomes consisting of D2O and dimyristoylglycerophosphocholine (Myr2GroPCho), three components were observed. The third component present may contain some left-handed extended helix. Spectral simulation was carried out to demonstrate that the CD spectra were consistent with the component conformations identified from FTIR spectroscopy. The stimulated CD spectra were in excellent agreement with the experimental spectra. The intact gamma subunit conformation in trifluoroethanol was shown to possess 72% alpha-helical and 28% beta-turn conformations. In water/Myr2GroPCho liposomes the percentage of each conformational component present is 37%, 38% and 25% for the alpha-helix, beta-turn and extended structures, respectively. Assuming that the transmembrane fragment was alpha-helical, an excellent correlation was found between this derived alpha-helical content in water/liposomes (37%) and from hydrophobicity plots where the percentage of amino acids in the transmembrane domain is predicted by others to be 34%. It is suggested that the beta-turn detected by CD and FTIR was attributable to a 3(10) helix rather than a type I or type III reverse turn.  相似文献   

16.
Like other protein conformational changes, ion channel gating requires the protein to achieve a high-energy transition-state structure. It is not known whether ion channel gating takes place on a broad energy landscape on which many alternative transition state structures are accessible, or on a narrow energy landscape where only a few transition-state structures are possible. To address this question, we measured how rate-equilibrium free energy relationships (REFERs) for di-liganded and unliganded acetylcholine receptor gating vary as a function of the gating equilibrium constant. A large slope for the REFER plot indicates an openlike transition state, whereas a small slope indicates a closedlike transition state. Due to this relationship between REFERs and transition-state structure, the sensitivity of the REFER slope to mutation-induced energetic perturbations allows estimation of the breadth of the energy landscape underlying gating. The relatively large sensitivity of di-liganded REFER slopes to energetic perturbations suggests that the motions underlying di-liganded gating take place on a broad, shallow energy landscape where many alternative transition-state structures are accessible.  相似文献   

17.
18.
Autoimmune T cell lines specific for muscle nicotinic acetylcholine receptor (AChR) were propagated from the blood of three myasthenia gravis patients by the use of a pool of synthetic peptides (delta-pool) corresponding to the complete sequence of the delta-subunit of human muscle AChR. Propagation of AChR-specific T cell lines was attempted unsuccessfully from four other myasthenia gravis patients and from four healthy controls. The lines had CD3+, CD4+, CD8- phenotype, strongly recognized the delta-pool, and cross-reacted vigorously with non-denatured AChR purified from mammalian muscle. They did not cross-react detectably with pools of similar overlapping synthetic peptides corresponding to the complete sequences of the alpha- and gamma-subunits of human muscle AChR. The sequence segments of the delta-subunit that contain T epitopes were identified by investigating the response of the three CD4+ T cell lines to the individual synthetic peptides forming the delta-pool. Each line had an individual pattern of peptide recognition. Although no immunodominant region, recognized in association with different DR haplotypes, could be identified, the sequence segments most strongly recognized by the CD4+ T cell lines were clustered within residues 121-290. One of the peptides more strongly recognized by the T cells corresponded to a sequence segment with high predicted propensity to form an amphipathic alpha-helix, a structural motif proposed to be typical of T epitopes.  相似文献   

19.
20.
Valor LM  Mulet J  Sala F  Sala S  Ballesta JJ  Criado M 《Biochemistry》2002,41(25):7931-7938
The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号