首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the physiological role of the "rapidly activating" delayed rectifier K+ current (IKr) in pacemaker activity in isolated sinoatrial node (SAN) myocytes and the expression of mouse ether-a-go-go (mERG) genes in the adult mouse SAN. In isolated, voltage-clamped SAN cells, outward currents evoked by depolarizing steps (greater than -40 mV) were strongly inhibited by the class III methanesulfonanilide compound E-4031 (1-2.5 microM), and the deactivation "tail" currents that occurred during repolarization to a membrane potential of -45 mV were completely blocked. E-4031-sensitive currents (IKr) reached a maximum at a membrane potential of -10 mV and showed pronounced inward rectification at more-positive membrane potentials. Activation of IKr occurred at -40 to 0 mV, with half-activation at about -24 mV. The contribution of IKr to action potential repolarization and diastolic depolarization was estimated by determining the E-4031-sensitive current evoked during voltage clamp with a simulated mouse SAN action potential. IKr reached its peak value (approximately 0.6 pA/pF) near -25 mV, close to the midpoint of the repolarization phase of the simulated action potential, and deactivated almost completely during the diastolic interval. E-4031 (1 microM) slowed the spontaneous pacing rate of Langendorff-perfused, isolated adult mouse hearts by an average of 36.5% (n = 5). Expression of mRNA corresponding to three isoforms coded by the mouse ERG1 gene (mERG1), mERG1a, mERG1a', and mERG1b, was consistently found in the SAN. Our data provide the first detailed characterization of IKr in adult mouse SAN cells, demonstrate that this current plays an important role in pacemaker activity, and indicate that multiple isoforms of mERG1 can contribute to native SAN IKr.  相似文献   

2.
An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.  相似文献   

3.
4.
Nonlinear or asymmetric charge movement was recorded from single ventricular myocytes cultured from 17-d-old embryonic chick hearts using the whole-cell patch clamp method. The myocytes were exposed to the appropriate intracellular and extracellular solutions designed to block Na+, Ca2+, and K+ ionic currents. The linear components of the capacity and leakage currents during test voltage steps were eliminated by adding summed, hyperpolarizing control step currents. Upon depolarization from negative holding potentials the nonlinear charge movement was composed of two distinct and separable kinetic components. An early rapidly decaying component (decay time constant range: 0.12-0.50 ms) was significant at test potentials positive to -70 mV and displayed saturation above 0 mV (midpoint -35 mV; apparent valence 1.6 e-). The early ON charge was partially immobilized during brief (5 ms) depolarizing test steps and was more completely immobilized by the application of less negative holding potentials. A second slower-decaying component (decay time constant range: 0.88-3.7 ms) was activated at test potentials positive to -60 mV and showed saturation above +20 mV (midpoint -13 mV, apparent valence 1.9 e-). The second component of charge movement was immobilized by long duration (5 s) holding potentials, applied over a more positive voltage range than those that reduced the early component. The voltage dependencies for activation and inactivation of the Na+ and Ca2+ ionic currents were determined for myocytes in which these currents were not blocked. There was a positive correlation between the voltage dependence of activation and inactivation of the Na+ and Ca2+ ionic currents and the activation and immobilization of the fast and slow components of charge movement. These complementary kinetic and steady-state properties lead to the conclusion that the two components of charge movement are associated with the voltage-sensitive conformational changes that precede Na+ and Ca2+ channel openings.  相似文献   

5.
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.  相似文献   

6.
The O2 sensitivity of dissociated type I cells from rat carotid body increases with age until approximately 14-16 days. Hypoxia-induced depolarization appears to be mediated by an O2-sensitive K+ current, but other K+ currents may modulate depolarization. We hypothesized that membrane potential may be stabilized in newborn type I cells by human ether-a-go-go-related gene (HERG)-like K+ currents that inhibit hypoxia-induced depolarization and that a decrease in this current with age could underlie, in part, the developmental increase in type I cell depolarization response to hypoxia. In dissociated type I cells from 0- to 1- and 11- to 16-day-old rats, using perforated patch-clamp and 70 mM K+ extracellular solution, we measured repolarization-induced inward K+ tail currents in the absence and presence of E-4031, a specific HERG channel blocker. This allowed isolation of the E-4031-sensitive HERG-like current. E-4031-sensitive peak currents in type I cells from 0- to- 1-day-old rats were 2.5-fold larger than in cells from 11- to 16-day-old rats. E-4031-sensitive current density in newborn type I cells was twofold greater than in cells from 11- to 16-day-old rats. Under current clamp conditions, E-4031 enhanced hypoxia-induced depolarization in type I cells from 0- to- 1-day-old but not 11- to 16-day-old rats. With use of fura 2 to measure intracellular Ca2+, E-4031 increased the cytosolic Ca2+ concentration response to anoxia in cells from 0- to- 1-day-old but not cells from 11- to 16-day-old rats. E-4031-sensitive K+ currents are present in newborn carotid body type I cells and decline with age. These findings are consistent with a role for E-4031-sensitive K+ current, and possibly HERG-like K+ currents, in the type I cell hypoxia response maturation.  相似文献   

7.
The effects of divalent cations on the E-4031-sensitive repolarization current (I(Kr)) were studied in single ventricular myocytes isolated from rabbit hearts. One group of divalent cations (Cd2+, Ni2+, Co2+, and Mn2+) produced a rightward shift of the I(Kr) activation curve along the voltage axis, increased the maximum I(Kr) amplitude (i.e., relieved the apparent inward rectification of the channel), and accelerated I(Kr) tail current kinetics. Another group (Ca2+, Mg2+ and Sr2+) had relatively little effect on I(Kr). The only divalent cation that blocked I(Kr) was Zn2+ (0.1-1 mM). Under steady-state conditions, Ba2+ caused a substantial block of I(K1) as previously reported. However, block by Ba2+ was time dependent, which precluded a study of Ba2+ effects on I(Kr). We conclude that the various effects of the divalent cations can be attributed to interactions with distinct sites associated with the rectification and/or inactivation mechanism of the channel.  相似文献   

8.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants.  相似文献   

9.
Studies of time-dependent, plateau outward current (delayed rectification) in the heart are complicated by the accumulation and depletion of K+ ions in intercellular clefts. To minimize this problem, we studied delayed rectification in acutely isolated (enzymic solution, gentle agitation) canine cardiac Purkinje myocytes using the single microelectrode voltage-clamp technique. We found a sigmoidal voltage-dependence for activation of outward plateau current, with maximal activation occurring at potentials near -10 mV. The activation and deactivation of plateau outward current was adequately described as the sum of a fast and slow exponential component. A comparison of the time course of activation of plateau outward current and the "envelope" of tail currents suggests that a single voltage-gated conductance with one open and two closed states can account for delayed rectification in Purkinje myocytes. These results differ from those previously obtained with intact sheep Purkinje fibers in which two time-dependent conductances were postulated to account for delayed rectification (Noble, D., and R. W. Tsien, 1969, J. Physiol. (Lond.), 200:205-231).  相似文献   

10.
D-ala2-D-leu5-enkephalin (100 to 1000 nM) reduces HVA Ca2+ currents of approximately 60% in 92% of the adult rat sensory neurons tested. In 80% of the cells sensitive to enkephalin, the reduction in Ca2+ current amplitude was associated with a prolongation of the current activation that was relieved by means of conditioning pulses in a potential range only about 10 mV positive to the current activation range in control conditions. The time course of the current activation was fitted to a single exponential in control, (tau = 2.23 msec +/- 0.14 n = 38) and double exponential with enkephalin, (tau 1 = 2.18 msec +/- 0.25 and tau 2 = 9.6 msec +/- 1, test pulse to -10 mV, 22 degrees C). A strong conditioning depolarizing prepulse speeded up the activation time course, completely eliminating the slow, voltage-sensitive exponential component, but it was only partial effective in restoring the current amplitude to control values. The voltage-independent inhibitory component that was not relieved could be recovered only by washing out enkephalin. In the remaining 20% of the cells affected, enkephalin decreased Ca2+ current amplitude without prolongation of Ca2+ channel activation. In these cases the conditioning voltage pulse was not effective in relieving the inhibition that persisted also at strong positive test potentials, on the outward currents. The voltage-dependent inhibition occurred slowly after enkephalin superfusion (tau congruent to 12 sec), whereas the voltage-independent one developed about ten times more rapidly. Dopamine (100 microM) could also induce both voltage-dependent and independent modulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cell swelling has been shown to cause activation of a variety of cardiac sarcolemmal ionic conductances including potassium channels. The aim of this study was to investigate the effect of swelling on the two subtypes of delayed rectifier potassium current (IKr and IKs) in single guinea pig myocytes using the whole-cell configuration of the patch clamp technique. When the holding potential was set at -40 mV and stepped to +40 mV for 1 s under isoosmotic conditions (300 mOsm) a delayed rectifier current (IK) was activated (0.86 +/- 0.05 nA; n = 43). Switching to a hypoosmotic solution (200 mOsm) caused a rapid increase in IK to a mean value of 1.43 +/- 0.10 nA (p < 0.05; n = 43). The effect of swelling on the two subtypes of IK was studied by analysis of deactivating tail currents using an envelope of tails protocol (stepping from -40 to +40 mV for 18 different pulse durations between 50 ms and 2.9 s; n = 16). Swelling caused a decrease in current amplitude measured at the end of the pulse (and IKtail) at short durations (< or = 150 ms) however, when the pulse duration was > 1 s swelling caused a significant increase in current. Using a pulse protocol to measure IKr with minimal contamination by IKs (voltage step from -40 to -10 mV for 250 ms) a 50-100 pA current was elicited which could be completely blocked by dofetilide (0.2 microM; n = 3). Introduction of hypoosmotic solution caused a significant decrease in IKr and when dofetilide (0.2 or 1.0 microM) was introduced the current remaining was decreased further (p < 0.05; n = 5), but was not completely blocked, thus suggesting that swelling had decreased the ability of dofetilide to block IKr. Similar results were obtained over a range of dofetilide concentrations and with a second IKr blocker, La3+. In Ca(2+)-free external solutions, pulsing to -10 mV for 500 ms to measure IKr in the absence of IKs, and to +60 mV for 5 s (with 0.2 microM dofetilide) to evoke only IKs, it was clear that swelling significantly increased IKs (pulse and tail currents) and decreased IKr. In addition, when measured using the perforated patch method, swelling modulated IKt and IKs in a similar fashion. We conclude that swelling has differential effects on the subtypes of the classical cardiac IK, which may have important implications in our understanding of the mechanisms underlying ischaemia- and reperfusion-induced arrhythmogenesis.  相似文献   

12.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

13.
Gating of Shaker K+ channels: I. Ionic and gating currents.   总被引:3,自引:1,他引:2       下载免费PDF全文
Ionic and gating currents from noninactivating Shaker B K+ channels were studied with the cut-open oocyte voltage clamp technique and compared with the macropatch clamp technique. The performance of the cut-open oocyte voltage clamp technique was evaluated from the electrical properties of the clamped upper domus membrane, K+ tail current measurements, and the time course of K+ currents after partial blockade. It was concluded that membrane currents less than 20 microA were spatially clamped with a time resolution of at least 50 microseconds. Subtracted, unsubtracted gating currents with the cut-open oocyte voltage clamp technique and gating currents recorded in cell attached macropatches had similar properties and time course, and the charge movement properties directly obtained from capacity measurements agreed with measurements of charge movement from subtracted records. An accurate estimate of the normalized open probability Po(V) was obtained from tail current measurements as a function of the prepulse V in high external K+. The Po(V) was zero at potentials more negative than -40 mV and increased sharply at this potential, then increased continuously until -20 mV, and finally slowly increased with voltages more positive than 0 mV. Deactivation tail currents decayed with two time constants and external potassium slowed down the faster component without affecting the slower component that is probably associated with the return between two of the closed states near the open state. In correlating gating currents and channel opening, Cole-Moore type experiments showed that charge moving in the negative region of voltage (-100 to -40 mV) is involved in the delay of the conductance activation but not in channel opening. The charge moving in the more positive voltage range (-40 to -10 mV) has a similar voltage dependence to the open probability of the channel, but it does not show the gradual increase with voltage seen in the Po(V).  相似文献   

14.
The electrophysiological properties of HK2 (Kv1.5), a K+ channel cloned from human ventricle, were investigated after stable expression in a mouse Ltk- cell line. Cell lines that expressed HK2 mRNA displayed a current with delayed rectifier properties at 23 degrees C, while sham transfected cell lines showed neither specific HK2 mRNA hybridization nor voltage-activated currents under whole cell conditions. The expression of the HK2 current has been stable for over two years. The dependence of the reversal potential of this current on the external K+ concentration (55 mV/decade) confirmed K+ selectivity, and the tail envelope test was satisfied, indicating expression of a single population of K+ channels. The activation time course was fast and sigmoidal (time constants declined from 10 ms to < 2 ms between 0 and +60 mV). The midpoint and slope factor of the activation curve were Eh = -14 +/- 5 mV and k = 5.9 +/- 0.9 (n = 31), respectively. Slow partial inactivation was observed especially at large depolarizations (20 +/- 2% after 250 ms at +60 mV, n = 32), and was incomplete in 5 s (69 +/- 3%, n = 14). This slow inactivation appeared to be a genuine gating process and not due to K+ accumulation, because it was present regardless of the size of the current and was observed even with 140 mM external K+ concentration. Slow inactivation had a biexponential time course with largely voltage-independent time constants of approximately 240 and 2,700 ms between -10 and +60 mV. The voltage dependence of slow inactivation overlapped with that of activation: Eh = -25 +/- 4 mV and k = 3.7 +/- 0.7 (n = 14). The fully activated current-voltage relationship displayed outward rectification in 4 mM external K+ concentration, but was more linear at higher external K+ concentrations, changes that could be explained in part on the basis of constant field (Goldman-Hodgkin-Katz) rectification. Activation and inactivation kinetics displayed a marked temperature dependence, resulting in faster activation and enhanced inactivation at higher temperature. The current was sensitive to low concentrations of 4- aminopyridine, but relatively insensitive to external TEA and to high concentrations of dendrotoxin. The expressed current did not resemble either the rapid or the slow components of delayed rectification described in guinea pig myocytes. However, this channel has many similarities to the rapidly activating delayed rectifying currents described in adult rat atrial and neonatal canine epicardial myocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Kinetics of veratridine action on Na channels of skeletal muscle   总被引:15,自引:8,他引:7       下载免费PDF全文
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations.  相似文献   

16.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

17.
The voltage-dependent inhibition of N-type Ca2+ channel current by the delta-opioid agonist [D-pen2, D-pen5]-enkephalin (DPDPE) was investigated in the mammalian cell line NG108-15 with 10 microM nifedipine to block L-type channels, with whole-cell voltage clamp methods. In in vitro differentiated NG108-15 cells DPDPE reversibly decreased omega-conotoxin GVIA-sensitive Ba2+ currents in a concentration-dependent way. Inhibition was maximal with 1 microM DPDPE (66% at 0 mV) and was characterized by a slowing of Ba2+ current activation at low test potentials. Both inhibition and kinetic slowing were attenuated at more positive potentials and could be relieved up to 90% by strong conditioning depolarizations. The kinetics of removal of inhibition (de-inhibition) and of its retrieval (re-inhibition) were also voltage dependent. Both de-inhibition and re-inhibition were single exponentials and, in the voltage range from -20 to +10 mV, had significantly different time constants at a given membrane potential, the time course of re-inhibition being faster than that of de-inhibition. The kinetics of de-inhibition at -20 mV and of reinhibition at -40 mV were also concentration dependent, both processes becoming slower at lower agonist concentrations. The rate of de-inhibition at +80/+120 mV was similar to that of Ca2+ channel activation at the same potentials measured during application of DPDPE (approximately 7 ms), both processes being much slower than channel activation in controls (<1 ms). Moreover, the amplitude but not the time course of tail currents changed as the depolarization to +80/+120 mV was made longer. The state-dependent properties of DPDPE Ca2+ channel inhibition could be simulated by a model that assumes that inhibition by DPDPE results from voltage- and concentration-dependent binding of an inhibitory molecule to the N-type channel.  相似文献   

18.
The mechanisms by which different concentrations of cesium modify membrane potentials and currents were investigated in guinea pig single ventricular myocytes. In a dose-dependent manner, cesium reversibly decreases the resting potential and action potential amplitude and duration, and induces a diastolic decaying voltage tail (Vex), which increases at more negative and reverses at less negative potentials. In voltage-clamped myocytes, Cs+ increases the holding current, increases the outward current at plateau levels while decreasing it at potentials closer to resting potential, induces an inward tail current (Iex) on return to resting potential and causes a negative shift of the threshold for the inward current. During depolarizing ramps, Cs+ decreases the outward current negative to inward rectification range, whereas it increases the current past that range. During repolarizing ramps, Cs+ shifts the threshold for removal of inward rectification negative slope to less negative values. Cs+-induced voltage and current tails are increased by repetitive activity, caffeine (5 mM) and high [Ca2+]o (8.1 mM), and are reduced by low Ca2+ (0.45 mM), Cd2+ (0.2 mM) and Ni2+ (2 mM). Ni2+ also abolishes the tail current that follows steps more positive than ECa. We conclude that Cs+ (1) decreases the resting potential by decreasing the outward current at more negative potentials, (2) shortens the action potential by increasing the outward current at potentials positive to the negative slope of inward rectification, and (3) induces diastolic tails through a Ca2+-dependent mechanism, which apparently is an enhanced electrogenic Na-Ca exchange.  相似文献   

19.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号