首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The external polysaccharide is a major component of Micrococcus lysodeikticus cell wall and displays distinct composition. The complete structure of the external polysaccharide had been elucidated as a basis for investigation of the cell wall structure-function relation. However, the mode of attachment of the polysaccharide to the peptidoglycan through a phosphodiester was not clear due to limitations in structural and biosynthetic studies. The present study describes purification of a lysozyme-resistant nondialyzable high-molecular-weight fragment of cell wall and identifies the sugar, D-glucose, as the point of external polysaccharide attachment to the peptidoglycan through a phosphate diester. Kinetic studies for the acid-catalyzed release of external polysaccharide from the peptidoglycan were performed in parallel with synthetic [methyl-2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-alpha-D- glucopyranoside-6-yl]-alpha-D-glucopyranosyl phosphate and alpha-D-glucopyranosyl phosphate and showed the presence of a phosphodiester linkage between external polysaccharide and peptidoglycan. In addition, type of phosphate residue and cross-linking between muramic acid and protein part have been determined.  相似文献   

2.
1. Protein-free walls of Micrococcus sp. 2102 contain peptidoglycan, poly-(N-acetylglucosamine 1-phosphate) and small amounts of glycerol phosphate. 2. After destruction of the poly-(N-acetylglucosamine 1-phosphate) with periodate, the glycerol phosphate remains attached to the wall, but can be removed by controlled alkaline hydrolysis. The homogeneous product comprises a chain of three glycerol phosphates and an additional phosphate residue. 3. The poly-(N-acetylglucosamine 1-phosphate) is attached through its terminal phosphate to one end of the tri(glycerol phosphate). 4. The other end of the glycerol phosphate trimer is attached through its terminal phosphate to the 3-or 4-position of an N-acetylglucosamine. It is concluded that the sequence of residues in the sugar 1-phosphate polymer-peptidoglycan complex is: (N-acetylglucosamine 1-phosphate)24-(glycerol phosphate)3-N-acetylglucosamine 1-phosphate-muramic acid (in peptidoglycan). Thus in this organism the phosphorylated wall polymer is attached to the peptidoglycan of the wall through a linkage unit comprising a chain of three glycerol phosphate residues and an N-acetylglucosamine 1-phosphate, similar to or identical with the linkage unit in Staphylococcus aureus H.  相似文献   

3.
A polysaccharide was found to be covalently linked to the peptidoglycan of the unicellular cyanobacterium Synechocystis sp. strain PCC6714 via phosphodiester bonds. It could be cleaved from the peptidoglycan-polysaccharide (PG-PS) complex by hydrofluoric acid (HF) treatment in the cold (48% HF, 0 degrees C, 48 h) yielding a pure, HF-insoluble peptidoglycan fraction and an HF-soluble polysaccharide fraction. The PG-PS complex was isolated from the Triton X-100-insoluble cell wall fraction by hot sodium dodecyl sulfate treatment and digestion with proteases. Digestion of the complex with N-acetylmuramidase released the glycopeptide-linked polysaccharide, which was further purified by dialysis and gel filtration on Sephadex G-50 and G-200. The polysaccharide consisted of glucosamine, mannosamine, galactosamine, mannose, and glucose and had a molecular weight of 25,000 to 30,000. Muramic acid-6-phosphate was identified as the binding site of the covalently linked, nonphosphorylated polysaccharide as revealed by chemical analysis of linkage fragments of the PG-PS complex.  相似文献   

4.
1. In addition to poly(ribitol phosphate) the walls of a bacteriophage-resistant mutant of Staphylococcus aureus H contain glycerol phosphate residues that are not removed on digestion with trypsin or extraction with phenol. 2. The glycerol phosphate is present in a chain, containing three or four glycerol phosphate residues, which is covalently attached to the peptidoglycan through a phosphodiester linkage to muramic acid; this linkage is readily hydrolysed by dilute alkali. 3. The degradative studies described suggest that the poly(ribitol phosphate) chains of the wall teichoic acid may be attached to the wall by linkage to this glycerol phosphate oligomer.  相似文献   

5.
S Kaya  K Yokoyama  Y Araki    E Ito 《Journal of bacteriology》1984,158(3):990-996
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains.  相似文献   

6.
The polysaccharide-peptidoglycan complex, which was prepared with lysozyme from Streptomyces roseochromogenes IAM53 cell walls, was hydrolyzed with lytic enzyme of Flavo-bacterium to separate polysaccharide. The enzymatically prepared polysaccharide (100 mg) contained 500 μmoles of hexoses, 40 μmoles of hexosamines and 31 μmoles of phosphate. Hexoses consisted of mannose and galactose in a molar ratio of 5 to 1. Hexosamines consisted of equimolar glucosamine and muramic acid, a half of which was identified as muramic acid 6-phosphate. The reducing end of the polysaccharide was muramic acid. The polysaccharide extracted with trichloroacetic acid contained no muramic acid-phosphate. So the polysaccharide moiety of S. roseochromogenes cell walls must be linked covalently to 6-position of muramic acid in peptidoglycan through phosphate,  相似文献   

7.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

8.
Ligatin, a lectin that recognizes phosphorylated sugars, has been demonstrated in mammalian tissues to bind specific hydrolases to cell surfaces. Ligatin exists as a filament that can be released from membranes still complexed with its bound hydrolases by treatment of membrane preparations with CaCl2 and/or pH 8.0. The ligatin-hydrolase complexes subsequently can be dissociated with ethyleneglycol-bis(β-amino-ethyl ether) N, N′-tetraacetic acid, resulting in a concurrent depolymerization of the ligatin filament. From membrane preparations of cerebrum, this procedure solubilized ligatin and a membrane-bound acetylcholinesterase (EC 3.1.1.7). Binding of the cosolubilized acetylcholinesterase to ligatin could be demonstrated in vitro by affinity chromatography using the immobilized lectin. Ligatin-hydrolase complexes have been shown to be dissociated by specific phosphorylated sugars (mannose 6-phosphate and glucose 1-phosphate). These sugars were also effective in eluting bound brain acetylcholinesterase from ligatin affinity columns. Analysis of labeled glycitols produced by tritiated borohydride reduction confirmed the presence of phosphorylated sugars on the ligatin-cosolubilized material from brain.  相似文献   

9.
Paper chromatography of neutral sugars and gas chromatography of their aldononitrile acetates indicated the presence of fucose, arabinose and a small amount of glucose in purified human umbilical cord hyaluronate. The molar ratios of serine, threonine and aspartic acid to neutral sugars were not unity, suggesting the non-involvement of the neutral sugars and the amino acids in a carbohydrate-protein linkage. The same was indicated by an increase in the percentage of the aforementioned amino acids and by the absence of sugar alditols in umbilical cord hyaluronate reduced eith NaBH4 -PdCl2, after alkali treatment. This reduction caused a decrease in the intrinsic viscosity and molecular wieght to about one-half and an appreciable decrease in the specific rota tion of hyaluronate, suggesting a separation of the two antiparallel chains o the double helical hyaluronate. The umbilical cord hyluronate containe contained bound silicon and it is possible that this bound silicon may cross-link the two chains at interspersed intervals through the uronic acid moiety and/or through neutral sugars.  相似文献   

10.
The polysaccharide chains and the crystallinity of β-glucan in a white sorghum variety, SK5912 were investigated using chemical and enzymic studies. Mild periodate oxidation and methylation, coupled to descending paper chromatography of products revealed the presence of unresolved non-carbohydrate moiety, 2, 4-and 2, 3-di-O-methyl -glucose residues (molar ratio; 18:3) and 2, 4, 6-and 2, 3, 6-tri-O-methyl -glucose residues (molar ratio; 1:14). Paper chromatography of the total acid hydrolysate also revealed a non-carbohydrate spot, identified as protein on the basis of positive Biuret and ninhydrin tests. The O-methyl -glucose residues suggest two polysaccharide chains designated X and Y. Chain X is formed through linking of β- -glucopyranosyl residues by (1→3) linkages with 85–86% (1→6) bonds at branch points and constitute about 6–7% of the β-glucan sample. Chain Y, which is 93–94% of the β-glucan polysaccharide chains, constitutes β- -glucopyranosyl residues in (1→4) linkages and 4–5% (1→6) bonds at branch points. Of the 18 branch points on the X-chains in a given β-glucan sample, about 15 are the Y chains interlinked to the X-chains through their (Y-chains) reducing ends. Both acid and enzyme hydrolyses of the β-glucan suggest two structural organizations, a crystalline and less crystalline granules, based on two first order kinetics. This was correlated by the progress curves obtained during hydrolysis with two purified isoforms of β-glucanases from the sorghum malt. The short and highly branched polysaccharide chains, and longer but less branched polysaccharide chains found in this β-glucan are reminiscent of the structures of amylopectin and amylose, respectively. The Kms of 0.30–0.32 and 0.42–0.50 mg β-glucan/ml for the β-glucanase isoforms also lay credence to both the crystalline forms and the highly polymerised nature of the β-glucan in white sorghum.  相似文献   

11.
The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.  相似文献   

12.
A serologically active, acidic arabinomannan has been isolated from Mycobacterium smegmatis. The polysaccharide contains approximately 56 arabinosyl and 11 mannosyl residues, and 2 phosphate, 6 monoesterified succinate, and 4 ether-linked lactate groups. After saponification to remove succinyl groups, the polysaccharide can be separated into phosphorylated (55%) and nonphosphorylated (45%) forms, the former containing a little more arabinose and a little less mannose than the latter. The structures of these polysaccharides were investigated by 1H- and 13C-n.m.r. spectroscopy and methylation analysis, before and after selective cleavage of furanosyl linkages. The phosphorylated and nonphosphorylated forms of the polysaccharide were found to have similar, if not identical, structures. The main structural feature of the polysaccharides is the presence of chains of contiguous arabinofuranosyl residues linked α-(1→5). These chains are attached at O-4 of arabinopyranosyl residues that are present in a core region of the polysaccharide that also contains mannopyranosyl residues. Immunochemical studies demonstrated that the polysaccharide is an effective, precipitating antigen with antisera from rabbits immunized with cell walls or heat-killed cells of M. smegmatis. The polysaccharide is, however, more effective as a precipitating antigen after removal of the succinate groups, and completely ineffective after removal of arabinofuranosyl residues. The polysaccharide therefore contains an important antigen in common with the arabinogalactan lipopolysaccharide of the cell wall of the bacterium, i.e., chains of contiguous α-(1→5)-linked arabinofuranosyl residues.  相似文献   

13.
This report describes the determination of the complete primary structure of the adhesin receptor polysaccharide of Streptococcus oralis ATCC 55229 (previously characterized as Streptococcus sanguis H1), a Gram-positive bacteria implicated in dental plaque formation. The polysaccharide was isolated from S. oralis ATCC 55229 cells after deproteination, enzymatic hydrolysis, and ion exchange chromatography. It was shown to consist of rhamnose, galactose, glucose, glycerol, and phosphate, in molar ratios of 2:3:1:1:1. Sequence and linkage assignments of the glycosyl residues were obtained by methylation analysis followed by gas-liquid chromatography and electron-impact mass spectrometry. 31P NMR spectroscopy revealed that phosphate was present in a diester, connecting glycerol to one of the galactosyl residues. High-performance liquid chromatography of a partial acid hydrolysate of the polysaccharide confirmed this finding by showing galactose 6-phosphate and glycerol 1-phosphate. The structural determination was completed by the combination of two-dimensional homonuclear Hartmann-Hahn and NOE experiments and heteronuclear [1H,13C] and [1H,31P] multiple-quantum coherence experiments. Thus, the adhesin receptor polysaccharide of S. oralis ATCC 55229 was found to be a polymer composed of hexasaccharide repeating units that contain glycerol linked through a phosphodiester to C6 of the alpha-galactopyranosyl residue and are joined end-to-end through galactofuranosyl-beta(1-->3)-rhamnopyranosyl linkages: [formula: see text] This structure is novel among bacterial cell surface polysaccharides in general and specifically among those implicated in dental plaque formation.  相似文献   

14.
Lysozyme from bacteriophage T4 was found to digest a soluble, uncrosslinked peptidoglycan which is secreted by cells of Micrococcus luteus when incubated in the presence of penicillin G. Analysis of the enzymatic degradation products shows that T4 acts as an endo-acetylmuramidase capable of cleaving glycosidic bonds only at muramic acid residues that are substituted with peptide side-chains. The results indicate that the secreted peptidoglycan may consist of a mixture of chains, approximately half of which are substituted by peptide side chains on most of their muramic acid residues, while the other half is made up of chains in which the muramic acid moieties are unsubstituted.  相似文献   

15.
Paper chromatography of neural sugars and gas chromatography of their aldononitrile acetates indicated the presence of fucose, arabinose and a small amount of glucose in purified human umbilical cord hyaluronate. The molar ratios of serine, threonine and aspartic acid to neural sugars were not unity, suggesting the non-involvement of the neutral sugars and the amino acids in a carbohydrate-protein linkage. The same was indicated by an increase in the percentage of the aforementioned amino acids and by the absence of sugar alditols in umbilical cord hyaluronate reduced with NaBH4-PdCl2, after alkali treatment. This reduction caused a decrease in the intrinsic viscosity and molecular weight to about one-half and an appreciable decrease in the specific rotation of hyaluronate, suggesting a separation of the two antiparallel chains of the double helical hyaluronate. The umbilical cord hyaluronate contained bound silicon and it is possible that this bound silicon may cross-link the two chains at interspersed intervals through the uronic acid moiety and/or through neutral sugars.  相似文献   

16.
Thyroglobulin (TG), the major exportable protein of thyroid follicle cells, is conveyed to lysosomes on a complex secretion, storage and recapture pathway by as yet unknown transport mechanisms. This report establishes that the dimeric porcine TG-molecule carries an average of six phosphate residues. Endoglycosidase digestion showed that two phosphate residues are bound to the high-mannose carbohydrate side chains (CHO), while two others are linked to the complex CHO. These four residues are also sensitive to alkaline phosphatase treatment, indicating their terminal linkage. Immunoprecipitation analyses showed that TG obtained from microsomal fractions is already phosphorylated. Most important, an enzymatic assay applied to hydrolysates of TG established that the two phosphate residues at the high mannose CHO are present as mannose-6-phosphate (M-6-P). Alkaline phosphatase treatment of biosynthetically radiophosphorylated CHO followed by hydrolysis and t.l.c. indicated that M-6-P is present at least in part in phosphomonoester linkage. Furthermore, porcine TG binds specifically to the M-6-P receptor of Chinese hamster ovary cells. It is concluded that the M-6-P residues of TG are exposed and able to operate as a ligand for the M-6-P receptor. It is unknown why the lysosomal recognition-marker M-6-P does not convey TG directly on an intracellular route to lysosomes. We propose that for the secretion of newly synthesized TG into the follicle lumen an additional export signal dominating over the M-6-P recognition-marker is required.  相似文献   

17.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

18.
Phosphorus nuclear magnetic resonance spectroscopy was used to study uptake and metabolic conversion of glycolytic intermediates in rat diaphragm muscles. The resonances of several phosphorus-containing metabolites were identified in the intact tissues and in their ethanolic extracts. Experiments on muscles preincubated with glucose 6-phosphate or glucose 1-phosphate indicated that: 1) both substrates penetrate into the tissue and actively participate in glycolytic reactions; 2) glucose 1-phosphate is completely converted into other metabolites, including glucose 6-phosphate and its products; 3) preincubation with either hexose monophosphate in the presence or in the absence of insulin produced the same set of phosphorylated metabolites. Addition of insulin to preincubation media induced a conspicuous spread of chemical shifts in the band arising from phosphorylated sugars in tissues incubated with glucose 1-phosphate but not in those treated with glucose 6-phosphate. The different responses to insulin exhibited by the 31P n.m.r. spectral profiles of tissues incubated with the two substrates substantiate the hypothesis that glucose 6-phosphate and its products may undergo their metabolic conversions in the tissue along distinct intracellular enzymatic pathways, on which insulin would exert different regulatory effects. This study indicates that 31P n.m.r. may provide a useful approach to the elucidation of metabolic processes involving sugar phosphates in intact tissues.  相似文献   

19.
Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2-3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5-6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, P(i) and PP(i). The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected.  相似文献   

20.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号