首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
DNA rearrangements in the form of deletions and duplications are found within and near integrated simian virus 40 (SV40) DNA in nonpermissive cell lines. We have found that rearrangements also occur frequently with integrated pSV2neo plasmid DNA. pSV2neo contains the entire SV40 control region, including the origin of replication, both promoters, and the enhancer sequences. Linearized plasmid DNA was electroporated into X1, an SV40-transformed mouse cell line that expresses SV40 large T antigen (T Ag) and shows very frequent rearrangements at the SV40 locus, and into LMtk-, a spontaneously transformed mouse cell line that contains no SV40 DNA. Stability was analyzed by subcloning G-418-resistant clones and examining specific DNA fragments for alterations in size. Five independent X1 clones containing pSV2neo DNA were unstable at both the neo locus and the T Ag locus. By contrast, four X1 clones containing mutants of pSV2neo with small deletions in the SV40 core origin and three X1 clones containing a different neo plasmid lacking SV40 sequences were stable at the neo locus, although they were still unstable at the T Ag locus. Surprisingly, five independent LMtk- clones containing pSV2neo DNA were unstable at the neo locus. LMtk- clones containing origin deletion mutants were more stable but were not as stable as the X1 clones containing the same plasmid DNA. We conclude that the SV40 origin of replication and early control region are sufficient viral components for the genomic instability at sites of SV40 integration and that SV40 T Ag is not required.  相似文献   

2.
3.
Homologous recombination between 2 truncated neo genes stably integrated in the genome of Chinese hamster ovary (CHO) cells was studied. A vector containing a functional gpt gene and 2 tandemly arranged G418 resistance (neo) gene fragments with about 400 bp of sequence homology was transfected into CHO cells. Clonal cell lines were established from transfected cultures and the spontaneous frequency of G418-resistant revertants was found to range between 1 x 10(-4) and 5 x 10(-4). The ability of the alkylating agents MMS and HN2 to induce recombination of the transfected neo genes was studied in 2 of the cell lines. After treatment with MMS at doses that reduced survival to 10% of the control these cell lines showed a dose-dependent increase in the frequency of G418-resistant revertants. No effect was observed after treatment with HN2. All G418-resistant subclones contained a new restriction fragment indicating that a whole neo gene had been formed by rearrangement in pairs of truncated neo genes. Hence, this system can be used to study molecular mechanisms and chemical inducibility of homologous recombination in mammalian cells.  相似文献   

4.
Heteroduplexes were prepared from two plasmids, pRH4-14/TK and pRH5-8/TK, containing different amber mutations in the neomycin resistance gene (Neor). The Neor gene was engineered to be expressed in both bacterial and mammalian cells. A functional Neor gene conferred kanamycin resistance to bacteria and resistance to the drug G418 to mammalian cells. In addition, the plasmids contained restriction site polymorphisms which did not confer a selectable phenotype but were used to follow the pattern of correction of mismatched bases in the heteroduplexes. In a direct comparison of the efficiency of transforming mouse LMtk- cells to G418r, the injection of heteroduplexes of pRH4-14/TK-pRH5-8/TK was 10-fold more efficient than the coinjection of pRH4-14/TK and pRH5-8/TK linear plasmid DNA. In fact, injection of 5 to 10 molecules of heteroduplex DNA per cell was as efficient in transforming LMtk- cells to G418r as the injection of 5 to 10 molecules of linear plasmid DNA per cell containing a wild-type Neor gene. To determine the pattern of mismatch repair of the injected heteroduplexes, plasmids were "rescued" from the G418r cell lines. From this analysis we conclude that the generation of wild-type Neor genes from heteroduplex DNA proceeds directly by correction of the mismatched bases, rather than by alternative mechanisms such as recombination between the injected heteroduplexes. Our finding that a cell can efficiently correct mismatched bases when confronted with preformed heteroduplexes suggests that this experimental protocol could be used to study a wide range of DNA repair mechanisms in cultured mammalian cells.  相似文献   

5.
G418抗性HEK293细胞的培育   总被引:3,自引:0,他引:3  
目的 培育具有G418抗性的HEK2 93细胞 ,用于建立猪内源性反转录病毒感染人HEK2 93细胞的模型。方法 通过脂质体转染的方法 ,将含有neo基因的质粒pIRESneo导入HEK2 93细胞中 ,利用G418的选择特性 ,对转染细胞进行压力筛选 ,并对其进行了PCR鉴定。结果 经 6 0 0 μg ml的G418压力筛选后 ,获得了抗性细胞克隆。抗性细胞的形态和生长速度与筛选前细胞没有差异 ,特异性核苷酸引物检测抗性细胞基因组DNA ,可以扩增出对应的核苷酸片段。结论 成功地培育了G418抗性HEK2 93细胞 ,为建立猪内源性反转录病毒感染人HEK2 93细胞的模型奠定了基础。  相似文献   

6.
In order to study the involvement of DNA topoisomerase I (top1) in recombination, we examined the effect of the anti-neoplastic drug camptothecin, which selectively poisons top1 by trapping top1-cleavable complexes on integration of exogenic vector into the genome of mammalian cells. We transfected mouse F9 teratocarcinoma cells as well as Chinese hamster V79 cells with a plasmid carrying a selectable neo gene treated with camptothecin, and determined the frequency of neo+ (G418(R)) colonies. We found that treatment with camptothecin for as short a time as 4 h after electroporation resulted in a 4- to 33-fold stimulation of plasmid integration into the recipient genome via non-homologous recombination. These results imply that top1-cleavable complexes trapped by camptothecin could be potentially recombinogenic structures and could stimulate non-homologous recombination in vivo, promoting the integration of transfected plasmids into mammalian genome.  相似文献   

7.
A recombinant plasmid was constructed (pV69) which comprises a subgenomic fragment of bovine papilloma virus type 1 (BPV1) DNA, part of plasmid pBR322 DNA and a drug resistance gene expressed in both mammalian fibroblasts and Escherichia coli. This gene (vv2) is a modified form of the bacterial neomycin resistance gene (neo) linked to the herpes simplex virus thymidine kinase (tk) promoter (plasmid pAG60), to which the original bacterial neo promoter from transposon Tn5 was added back, upstream of the eukaryotic promoter. It induced kanamycin resistance in E. coli, as well as resistance to the drug G418 in rat and mouse fibroblasts. Its expression in FR3T3 rat cells was enhanced as compared with the original tk-neo construction. After transfer of plasmid pV69 into C127 mouse cells or FR3T3 rat cells, the number of resistant colonies selected in medium containing G418 was one to two orders of magnitude higher than that of transformed foci in normal medium. In eight independent cell lines selected by drug resistance, pV69 DNA was found to be maintained in a plasmidial state, without any detectable rearrangement or deletion and could be transferred back in E. coli. In contrast, cell lines selected by focus formation in normal medium maintained deleted forms of the original plasmid DNA, and only part of them were resistant to G418. Most of the drug-resistant clones had kept the morphology and growth control of the normal fibroblasts. However, with further passages in culture, these cells spontaneously produced transformed foci with increasing frequencies.  相似文献   

8.
We have evaluated the ability of immortalized human fibroblasts to recombine transfected plasmid DNA. A number of cell lines from normal individuals and from patients with DNA damage-processing defects were examined. Two plasmid recombination substrates were derived from pSV2neo and contained nonoverlapping deletions in the aminoglycoside phosphotransferase II gene. Intermolecular recombination was assessed by two methods after cotransfection. In a short-term, extrachromosomal recombination assay, low molecular weight DNA was extracted from the human cells 48 h after transfection, and recombinant plasmids were detected by transformation into appropriate indicator bacteria. In a long-term stable recombination assay the fibroblasts were cotransfected and G418-resistant colonies allowed to form. By the former assay all but two cultures were recombination-proficient, whereas all were recombination-proficient by the latter assay. The efficiency of transfection of human cells with plasmids appears to be a major variable affecting recombination. Recombination can be stimulated by uv irradiation of plasmid DNA prior to transfection. Cells from patients with Fanconi anemia, ataxia telangiectasia, and xeroderma pigmentosum complementation groups A, C, D, E, and G are not defective at intermolecular plasmid recombination.  相似文献   

9.
10.
Cotransformation and gene targeting in mouse embryonic stem cells.   总被引:17,自引:3,他引:14       下载免费PDF全文
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.  相似文献   

11.
We examined the effect of double-strand breaks on homologous recombination between two plasmids in human cells and in nuclear extracts prepared from human and rodent cells. Two pSV2neo plasmids containing nonreverting, nonoverlapping deletions were cotransfected into cells or incubated with cell extracts. Generation of intact neo genes was monitored by the ability of the DNA to confer G418r to cells or Neor to bacteria. We show that double-strand breaks at the sites of the deletions enhanced recombination frequency, whereas breaks outside the neo gene had no effect. Examination of the plasmids obtained from experiments involving the cell extracts revealed that gene conversion events play an important role in the generation of plasmids containing intact neo genes. Studies with plasmids carrying multiple polymorphic genetic markers revealed that markers located within 1,000 base pairs could be readily coconverted. The frequency of coconversion decreased with increasing distance between the markers. The plasmids we constructed along with the in vitro system should permit a detailed analysis of homologous recombinational events mediated by mammalian enzymes.  相似文献   

12.
13.
The ability of autonomously replicating plasmids to recombine in mammalian cells was investigated. Two deletion plasmids of the eukaryotic-prokaryotic shuttle vector pSV2neo were cotransfected into transformed monkey COS cells. Examination of the low molecular weight DNA isolated after 48 hr of incubation revealed that recombination between the plasmids had occurred. The DNA was also used to transform recA- E. coli. Yield of neoR colonies signified homologous recombination. Examination of the plasmid DNA from these colonies confirmed this view. Double-strand breaks in one or both of the input plasmids at the sites of deletion resulted in an enhancement of recombination frequency. The recombination process yielded monomeric and dimeric molecules. Examination of these molecules revealed that reciprocal recombination as well as gene conversion events were involved in the generation of plasmids bearing an intact neo gene. The COS cell system we describe is analogous to study of bacteriophage recombination and yeast random-spore analysis.  相似文献   

14.
The frequency of recombination between transfected plasmid DNAs was measured by using cultured cells infected with a variety of poxviruses. Plasmid derivatives of pBR322 containing XhoI linker insertion mutations in the tetracycline gene were used to assess recombination frequencies in rabbit cells infected with the leporipoxviruses Shope fibroma virus and myxoma virus and the orthopoxvirus vaccinia virus. Recombination frequencies were calculated by Southern blotting, which detects novel plasmid restriction fragments generated by genetic recombination, and by a plasmid rescue procedure in which the reconstruction of an intact tetracycline gene in the transfected rabbit cell was monitored by transformation back into Escherichia coli. The highest recombination frequencies were measured in cells infected with Shope fibroma virus and myxoma virus, and a minimum recombination frequency of at least one recombination event per 7 kilobases was calculated within 24 h posttransfection under these conditions. The deduced recombination frequency in vaccinia virus-infected cells was at least fivefold lower and was not detectable in mock-infected cells, suggesting that the induced recombination activity detected by these methods was under viral control. The results of kinetic studies, analysis with methylation-sensitive restriction enzymes, and the use of phosphonoacetic acid, a specific inhibitor of poxvirus DNA polymerase, indicated that recombination between transfecting DNAs occurred concomitantly with DNA replication but that the two processes could be partially uncoupled. We conclude that the dramatic expansion of recombination activities in the cytoplasm of poxvirus-infected cells is virus specific and offers a good model system with which to analyze the mechanism of recombination in a eucaryotic environment.  相似文献   

15.
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits numerous biological responses including carcinogenicity. The molecular mechanism by which TCDD exerts its tumorigenic effects is unclear, since it does not directly damage DNA. TCDD-initiated toxicity can be mediated by the aryl hydrocarbon receptor (AhR) pathway and/or via increased oxidative stress. DNA damage, including DNA oxidation, can induce DNA double-strand breaks, which can be repaired through homologous recombination. Excessive DNA double-strand breaks may promote aberrant DNA recombination, which can lead to detrimental genetic changes and ultimately to carcinogenesis. TCDD has been shown to induce homologous recombination but the molecular mechanism mediating these events are unknown. To investigate the role of the AhR and oxidative DNA damage in mediating TCDD-induced homologous recombination we used a Chinese hamster ovary (CHO) cell line containing a neo direct repeat recombination substrate (CHO 3-6). CHO 3-6 cells were exposed to TCDD (50, 500 or 1000 pM) in the presence or absence of an AhR antagonists (0.1 microM alpha-naphthoflavone (alpha-NF)) for 6 or 24 h and 2 weeks later homologous recombination frequencies were determined by counting the number of neo expressing, G418-resistant colonies per live cells plated. TCDD-initiated DNA oxidation was determined by measuring the formation of 8-hydroxy-2'-deoxyguanosine via HPLC and electrochemical detection. Exposure to 500 pM TCDD for 24 h significantly increased the frequency of homologous recombination. Southern blot analysis on G418-resistant colonies determined that TCDD induced both conservative gene conversion events and deletion events. DNA oxidation was not increased in cells exposed to TCDD for either 6 or 24 h. However, alpha-naphthoflavone exposure resulted in a significant decrease in TCDD-induced homologous recombination frequency. These results suggest that TCDD-initiated homologous recombination in CHO 3-6 cells is mediated by the AhR and not via increased oxidative stress.  相似文献   

16.
A method is described which enables quantitative evaluation of the ability of gram-negative bacterial cells to perform homologous recombination between DNA molecules. This method is particularly useful in cases where the stringency of rec mutations is to be determined. The procedure is based on a wide-host-range vector (pRK404) in which two unequally truncated and overlapping fragments of the neo gene were cloned. When introduced into gram-negative bacteria either by transformation or by conjugation, molecules of this plasmid, pBX404-7, undergo unequal crossing-over leading to the restoration of a functional neo gene. The stringency of putative rec mutations can thus be determined by measuring the frequency at which kanamycin-resistant colonies appear in bacterial strains harboring pBX404-7.  相似文献   

17.
Gene modification by homologous recombination is one of the techniques that may eventually be used in gene replacement therapy. We tested whether small, synthetic single-stranded oligodeoxynucleotides are capable of participating in homologous recombination in human cells. A plasmid carrying a mutant neomycin phosphotransferase (neo) gene was cotransfected with a 40-nucleotide single-stranded oligomer that contained the wild-type neo gene sequence into human cells. Cells expressing neo were selected in the antibiotic G418. These cells contained wild-type molecules, which resulted from recombination between the two molecules. The results indicate that this approach may be useful in correcting or introducing single point mutations into the genomes of mammalian cells.  相似文献   

18.
To test the validity of various models for recombination between extrachromosomal DNAs in mammalian cells, we measured recombination between a plasmid containing a herpesvirus thymidine kinase (tk) gene with an internal BamHI linker insertion mutation (ptkB8) and a tk gene deleted at both ends (tk delta 3' delta 5'). The two DNAs shared 885 base pairs of perfect tk homology except for the interruption at the linker insertion site. Recombination events that restored the mutated insertion site to wild type were monitored by the generation of hypoxanthine-aminopterine-thymidine-resistant colonies after cotransformation of Ltk- cells with the two DNAs. We found that cleavage of the ptkB8 DNA at the linker insertion site was essential for gene restoration. If the tk delta 3' delta 5' DNA was ligated into mp10 vector DNA, then recombination with the cleaved ptkB8 DNA was inefficient. In contrast, if it was excised from that vector by cleavage at flanking restriction sites, then recombination was stimulated about 150-fold. Using restriction site polymorphisms, we showed that most of the recombination events leading to restoration of the tk gene with the excised tk delta 3' delta 5' fragment involved three double-strand duplexes: two ptkB8 DNAs and one tk delta 3' delta 5' fragment. These results are much more readily explained by the single-strand annealing model of recombination than by the double-strand break repair model, and they suggest that the deficiency of the latter pathway for extrachromosomal mammalian recombination may be due, at least in part, to the obligate tripartite nature of the reaction. Finally, we measured the effect of DNA homology on the efficiency of the ptkB8-tk delta 3' delta 5' reaction. Our results showed a near-linear relationship between the efficiency of recombination and the amount of homology flanking either side of the linker insertion site. Moreover, we could detect thymidine kinase-positive transformants with as little as 10 base pairs of homology.  相似文献   

19.
Chimeric antibodies composed of mouse-derived variable regions and human-derived constant regions have been developed for clinical use. However, construction of chimeric mouse/human genes in expression vectors is time-consuming work. In this study, we developed convenient vectors for construction of chimeric mouse/human antibodies. The protocols are as follows: In mouse hybridomas and B cells, most active VH and V kappa genes can be identified as rearranged bands by Southern hybridization of EcoRI- and HindIII-digested DNAs with JH and J kappa probes, respectively, and such fragments can be isolated in lambda-EcoRI and lambda-HindIII vectors, respectively. We constructed two plasmids: pSV2-HG 1 gpt contains human C gamma 1 and Ecogpt genes, and only one EcoRI site upstream of the C gamma 1 gene; pSV2-HC kappa neo contains human C kappa and neo genes, and only one HindIII site upstream of the C kappa gene. An isolated EcoRI fragment containing a VHDHJH gene and a HindIII fragment containing a V kappa J kappa gene are inserted into pSV2-HC kappa neo, respectively. Both resulting plasmid DNAs are co-transfected into SP2/0 cell, a non-Ig-secreting mouse myeloma. Transformants are selected by both mycophenolic acid and G418. With this procedure, it takes only 2 months to obtain chimeric antibodies.  相似文献   

20.
A line of mouse mammary epithelial cells (NMuMG) has been characterized for its ability to be stably transfected with exogenous DNA. A transfection frequency of at least 1 cell per 1,000 was obtained with the pSV2neo plasmid. Several thousand G418-resistant NMuMG cell clones can easily be generated in cotransfection of genomic DNA and pSV2neo. The NMuMG cells were isolated from normal mammary glands and do not form malignant lesions when injected into nude mice. We have cotransfected NMuMG cells with pSV2neo and genomic DNA from the human EJ bladder carcinoma line, a cell line which contains an activated c-rasH oncogene. When a pool of 4,700 G418-resistant colonies was injected into nude mice, tumors were obtained. These tumors contain a transfected human rasH gene. Genomic DNA transfection into a line of mouse epithelial cells, in combination with the selection of stable transfectants and tumor induction in nude mice, can be used to screen human tumor DNA for the presence of activated oncogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号