首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brood parasitism and nest predation are major causes of reproductive failure for many bird species nesting in fragmented landscapes. While brood parasites and predators may act independently, they could also interact if brood parasites increase the likelihood that predators detect nests. In this study, we examined the interaction between cowbird parasitism and nest predation in a 10 year study on 466 American redstart Setophaga ruticilla nests in central Alberta, Canada. We used advanced nest survival models to examine the support for three mechanisms that might lead to a positive correlation between brood parasitism and nest predation: 1) the presence of a cowbird nestling might increase the detection of the nest by predators, 2) nests with lower cover are more likely to be detected by both cowbirds and predators, and 3) cowbirds and predators may co-occur in landscapes of similar structure. Twelve percent of nests were parasitized and those nests had a 16–19% higher rate of failure due to predators compared to unparasitized nests. Daily nest predation rates increased during the nestling stage for both groups, but more strongly for parasitized nests. Loud begging by the cowbird nestling and/or higher parental feeding rates for the cowbird may have increased nest detectability to predators. Brood parasitism and nest predation were also positively related to forest cover, indicating landscape level effects were influential. Most nest predators were forest species and we suspect cowbirds responded positively to forest cover because of the increased abundance of songbird hosts. Nest-site features had less of an impact on nest predation or brood parasitism, although nests with higher overhead cover were less susceptible to predators. Our study shows how multiple mechanisms, particularly the behavioral effects of the brood parasite nestling and landscape structure, can lead to a positive relationship between nest predation and brood parasitism.  相似文献   

2.
Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat‐predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post‐initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown‐headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism‐predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U‐shaped relationship) with nest‐initiation timing, but experimental nests recorded no such patterns. After adjusting natural‐nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling‐period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed.  相似文献   

3.
ABSTRACT.   Swallows and martins are infrequent hosts of the generalist brood parasite Shiny Cowbird ( Molothrus bonariensis ). We monitored 50 nesting attempts by White-rumped Swallows ( Tachycineta leucorrhoa ) over a two-year period in Argentina and detected low rates of brood parasitism (three nests, or 6%). Of the three nests parasitized, cowbirds ( N = 1 per nest) successfully fledged from two. Eight of 13 swallow eggs in these three nests were punctured by cowbirds, and all but one swallow nesting starved at the two parasitized nests. At least two factors may contribute to the low frequency of parasitism of White-rumped Swallows by Shiny Cowbirds, including the inability of the larger cowbirds to enter some nest cavities and the aggressive nest defense behavior of adult swallows.  相似文献   

4.
ABSTRACT Brood parasites often must overcome host defenses that may include behaviors that serve other functions, such as deterrence of predators and nest attendance during laying and incubation. Host use by brood parasites may also be influenced by competitors in areas where more than one parasitic species occurs. We identified the degree to which behavior of potential hosts and potential competitors affected laying by Brown‐headed Cowbirds (Molothrus ater) and Bronzed Cowbirds (M. aeneus) at a site in south Texas where they co‐occur. We watched potential host nests during the presunrise period to record cowbird laying and document nest visitation, laying, cowbird‐host encounters, and nest attentiveness by hosts. Hosts were frequently at their nests when cowbirds laid eggs (83% of 121 watches among nests of five host species) and cowbirds regularly encountered hosts (43–74% and 40–77% of watches per species of host for Brown‐headed and Bronzed cowbirds, respectively). Host nest defense infrequently interfered with cowbird laying and cowbirds rarely interacted with one another during laying. Overall, 12% of the 42 cowbird laying attempts that elicited host nest defense failed, resulting in cowbird eggs either laid atop hosts as they sat in nests or laid outside the nest cup. We clearly documented that relatively small hosts can thwart parasitism by cowbirds. Thus, the potential for successful defense of nests should be considered when assessing the evolution of behaviors to deter the removal of host eggs by cowbirds and mechanisms leading to nest abandonment. Regarding the latter, the presence of a cowbird at a nest would be a poor indicator for parasitism as some laying attempts were thwarted and unparasitized broods were reared at those nests. Despite the potential for nest defense to affect host use by cowbirds, we did not detect an effect of nest defense. Because most host defense was ineffective, we examined hypotheses for the timing of cowbird laying and host nest attendance. Our analysis of time of day of laying by Brown‐headed Cowbirds at our site and data compiled from the literature suggests that laying time is best predicted by the time of civil twilight (first light) rather than sunrise.  相似文献   

5.
The cost of brood parasitism favors the evolution of host behaviors that reduce the risk or expense of being parasitized. Endangered Black‐capped Vireos (Vireo atricapilla) have likely coexisted with brood‐parasitic Brown‐headed Cowbirds (Molothrus ater) for more than 10,000 yr, so it is likely that they have evolved anti‐parasitic behaviors. We monitored naturally parasitized and non‐parasitized vireo nests to evaluate factors that might explain parasitism risk and nest desertion behavior and also assessed whether behaviors that occurred after being parasitized improved reproductive output. Vireos reduced the risk of parasitism by initiating breeding early and nesting farther from open grasslands and edges of woody thickets. Post‐laying, nest desertion was common (70% of parasitized nests) and increased with both the presence of at least one cowbird egg in nests and clutch reduction by cowbirds. After accounting for these cues, desertion was also more likely at nests located closer to cowbird foraging habitat and below potential cowbird vantage points. Despite its regularity, desertion did not appear to provide reproductive benefits to vireos. Instead, accepting cowbird eggs was a more effective strategy because 42% of cowbird eggs did not hatch. Furthermore, cowbird eggs were somehow ejected from at least three vireo nests. Our results suggest that Black‐capped Vireos can behave in a variety of ways that reduce the impact of brood parasitism, with frontline behaviors appearing to provide the greatest benefit. Our results also suggest that habitat management should focus on providing Black‐capped Vireos with adequate breeding habitat that provides access to safe nesting sites, and with high‐quality wintering habitat that allows vireos to migrate and initiate nesting early.  相似文献   

6.
The reproductive interactions of the Shiny Cowbird Molothrus bonariensis , a brood parasite, and the Yellow-hooded Blackbird Agelaius icterocephalus , a host of the cowbird, were studied In Trinidad, West Indies. We gathered information on the breeding biology of the Shiny Cowbird and the Yellow-hooded Blackbird, the frequency of use of the host species, and the effects of brood parasitism on host breeding success. Yellow-hooded Blackbirds are polygynous for the most part; males build nests and attempt to attract females to lay in them by means of song and visual displays directed towards the nests. This behaviour probably makes it easy for cowbirds to locate breeding birds and their nests. Cowbird eggs were found in 153 of 377 (40–3 %) blackbird nests located before the nestling stage. Shiny Cowbird parasitism of the Yellow-hooded Blackbird had little negative impact on host reproductive success, whereas predation accounted for the majority of nest failures. Vigilant nest defense by male blackbirds combined with colonial breeding apparently also minimized the extent of host egg damage and removal by cowbirds, and the parasitized and unparasitized nests were equally successful at producing blackbirds. Cowbirds most frequently parasitized the first or only nesting attempts in blackbird territories, and first or only nests were also successful more frequently than subsequent nests.  相似文献   

7.
ABSTRACT Avian brood parasites usually remove or puncture host eggs. Several hypotheses have been proposed to explain the function of these behaviors. Removing or puncturing host eggs may enhance the efficiency of incubation of cowbird eggs (incubation‐efficiency hypothesis) or reduce competition for food between cowbird and host chicks in parasitized nests (competition‐reduction hypothesis) and, in nonparasitized nests, may force hosts to renest and provide cowbirds with new opportunities for parasitism when nests are too advanced to be parasitized (nest‐predation hypothesis). Puncturing eggs may also allow cowbirds to assess the development of host eggs and use this information to decide whether to parasitize a nest (test‐incubation hypothesis). From 1999 to 2002, we tested these hypotheses using a population of Creamy‐bellied Thrushes (Turdus amaurochalinus) in Argentina that was heavily parasitized by Shiny Cowbirds (Molothrus bonariensis). We found that 56 of 94 Creamy‐bellied Thrush nests (60%) found during nest building or egg laying were parasitized by Shiny Cowbirds, and the mean number of cowbird eggs per parasitized nest was 1.6 ± 0.1 (N= 54 nests). At least one thrush egg was punctured in 71% (40/56) of parasitized nests, and 42% (16/38) of nonparasitized nests. We found that cowbird hatching success did not differ among nests where zero, one, or two thrush eggs were punctured and that the proportion of egg punctures associated with parasitism decreased as incubation progressed. Thus, our results do not support the incubation‐efficiency, nest‐predation, or test‐incubation hypotheses. However, the survival of cowbird chicks in our study was negatively associated with the number of thrush chicks. Thus, our results support the competition‐reduction hypothesis, with Shiny Cowbirds reducing competition between their young and host chicks by puncturing host eggs in parasitized nests.  相似文献   

8.
The southwestern willow flycatcher (Empidonax traillii extimus) is a federally endangered subspecies that breeds in increasingly fragmented and threatened habitat. We examined whether temporal and habitat characteristics were associated with risk of predation and probability of brood parasitism by brown-headed cowbirds (Molothrus ater) on flycatcher nests at 6 sites in southern Nevada and northwestern Arizona, USA. For nest predation, we found the most support for a model that included date and an interaction between parasitism status and nesting stage. Daily nest survival decreased from 0.87 (95% CI = 0.81–0.93) to 0.78 (95% CI = 0.72–0.84) through the season for parasitized nests but remained relatively constant for unparasitized nests (0.93, 95% CI = 0.91–0.95 to 0.92, 95% CI = 0.91–93). Parasitized nests had lower survival than non-parasitized nests during the incubation (0.85, 95% CI = 0.84–0.86 vs. 0.92, CI = 0.91–0.93) and nestling (0.79, 95% CI = 0.77–0.81 vs. 0.91, 95% CI = 0.90–0.92) stages. Of the variables included in our parasitism candidate models, model-averaged coefficients and odds ratios supported only distance to habitat edge; odds of parasitism decreased 1% for every 1 m from the habitat edge. Nests greater than 100 m from an edge were 50% less likely to be parasitized as those on an edge, however, only 52 of 233 nests (22%) were found at this distance. Where management and conservation goals include reducing nest losses due to parasitism, we recommend restoration of habitat patches that minimize edge and maximize breeding habitat further from edges. At sites where cowbirds have been documented as important nest predators, controlling cowbirds may be one option, but further study of the link between parasitism and nest predation and the identification of major nest predators at specific sites is warranted. © 2011 The Wildlife Society.  相似文献   

9.
Antarctic terns have to co‐exist in a limited space with their major nest predator, the skuas. We conducted artificial nest experiments to evaluate the roles of parental activity, nest location and nest and egg crypsis in this simple predator–prey system. Predation on artificial (inactive) nests was higher in traditional nesting sites than in sites previously not occupied by terns, which suggests that skuas memorized past tern breeding sites. Predation on artificial nests in inactive colonies was higher than in active (defended) colonies. Parental defense reduced predation in colonies to the level observed in artificial nests placed away from colonies. This suggests that communal defense can balance the costs of attracting predators to active colonies. Within colonies, predation was marginally higher on experimental eggs put in real nests than on bare ground. Although it seems that the presence of a nest is costly in terms of increased predation, reductions in nest size might be constrained by the need for protective nest structures and/or balanced by opposing selection on nest size. Predation did not differ markedly between artificial (quail) and real tern eggs. A simultaneous prey choice experiment showed that the observed predation rates reflected egg/nest detectability, rather than discrimination of egg types. In summary, nesting terns probably cannot avoid being detected, and they cannot defend their nest by attending them. Yet, by temporarily leaving the nest, they can defend it through communal predator mobbing, and at the same time, they can benefit from crypsis of unattended nest and eggs.  相似文献   

10.
We observed brood parasitism by brown-beaded cowbirds (Molothrusater) on indigo buntings (Passerina cyanea) and estimated dieimpact of parasitism on the success of the individual buntingsin their current nests and in their future survival and reproduction.Rates of parasitism over 8 years were 26.6% in 1040 nests and19.8% in 693 nests in two areas in southern Michigan. Risk ofparasitism was high early in the season; half the bunting nestswere begun after the end of the cowbird season. Risk was independentof female age, plant containing the nest, or habitat The immediatecost of parasitism was 1.19 and 1.26 fewer buntings fledgedper nest. Bunting success was lower in parasitized nests withcowbird eggs (nests were more likely to be deserted or predated),lower when the cowbird nestling failed (nests were more likelyto be predated), and lower when the cowbird fledged (fewer buntingsfledged) compared to nonparasitized nests. Costs were due toremoval of a bunting egg when die cowbird laid its own egg andto competition for parental care of the cowbird and buntingnestlings. Buntings that fledged from nests where a cowbirdalso fledged were only 18% as likely to survive and return totheir natal area in the next year as buntings from nests wherea cowbird did not fledge. Long-term effects of cowbird parasitismon adult breeding later in the season, survival to the nextseason, and reproductive success in the next season were negligiblewhen compared between birds that reared a cowbird and birdsthat reared only a bunting brood, or between birds that wereparasitized and birds that escaped parasitism. The results indicatelittle long-term cost of brood parasitism on individual fitnessof adult buntings beyond the impact on the current nest andthe survival of buntings that fledge from it; nearly all costis to the parasitized brood.  相似文献   

11.
Predation and brood parasitism are common reasons for nesting failure in passerine species and the additive impact by invasive species is a major conservation concern, particularly on tropical islands. Recognising the relative contribution of the different components of nesting failure rates is important to understand co-evolutionary interactions within brood parasite–host systems. In the remote archipelago of New Caledonia, the fan-tailed gerygone Gerygone flavolateralis is the exclusive host of the brood-parasitic shining bronze-cuckoo Chalcites lucidus. Additionally, invasive rodents also possibly have an impact on breeding success. To estimate the impact of potential nest predators, we 1) video monitored nests to identify predators, 2) estimated the probability of predation based on nest visibility and predator abundance and 3) tested the possibility that the location of experimental nests and lack of odour cues decrease the predation by rodents. In addition, we estimated nest survival rates using data collected in different habitats over the course of eight breeding seasons. Nesting success of fan-tailed gerygones was relatively low and predation was the main cause of nesting failure. We recorded mainly predation by native birds, including the shining bronze-cuckoo, whereas predation by rats was rare. In open habitats predation by cuckoos was much lower than predation by other avian predators. Neither predator activity around nests nor nest visibility influenced the probability of predation. Experimental nests in more accessible locations and containing an odorous bait were more exposed to rodent predation. Apparently, the fan-tailed gerygone has either never been specifically vulnerable to predation by rats or has developed anti-predator adaptations.  相似文献   

12.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

13.
Brood parasite – host systems continue to offer insights into species coevolution. A notable system is the redstart Phoenicurus phoenicurus parasitized by the ‘redstart‐cuckoo’ Cuculus canorus gens. Redstarts are the only regular cuckoo hosts that breed in cavities, which challenges adult cuckoos in egg laying and cuckoo chicks in host eviction. We investigated parasitism in this system and found high overall parasitism rates (31.1% of 360 redstart nests), but also that only 33.1% of parasitism events (49 of 148 eggs) were successful in laying eggs into redstart nest cups. The majority of cuckoo eggs were mislaid and found on the rim of the nest; outside the nest cup. All available evidence suggests these eggs were not ejected by hosts. The effective parasitism rate was therefore only 12.8% of redstart nests. Redstarts responded to natural parasitism by deserting their nests in 13.0% of cases, compared to desertion rates of 2.8% for non‐parasitized nests. Our egg parasitism experiments found low rates (12.2%) of rejection of artificial non‐mimetic cuckoo eggs. Artificial mimetic and real cuckoo eggs added to nests were rejected at even lower rates, and were always rejected via desertion. Under natural conditions, only 21 cuckoo chicks fledged of 150 cuckoo eggs laid. Adding to this low success, is that cuckoo chicks are sometimes unable to evict all host young, and were more likely to die as a result compared to cuckoo chicks reared alone. This low success seems to be mainly due to the cavity nesting strategy of the redstart which is a challenging obstacle for the cuckoo. The redstart‐cuckoo system appears to be a fruitful model system and we suggest much more emphasis should be placed on frontline defences such as nest site selection strategies when investigating brood parasite–host coevolution.  相似文献   

14.
There are at least four main hypotheses that may explain how the evolution of host selection by avian brood parasites could be linked to nest predation among their potential hosts. First, selection may have favoured parasite phenotypes discriminating among hosts on the basis of expected nest failure. Second, parasitized nests may be more easily detected by predators and extra costs of parasitism may accelerate the evolution of host defences. Third, selection may have favoured predator phenotypes avoiding parasitized nests because parasitism enhances nest defence. Fourth, female brood parasites may directly or indirectly induce host nesting failures in order to enhance future laying opportunities. We collected data on brood parasitism and nest failure due to predation to test these hypotheses in a comparative approach using North American passerines and their brood parasite, the brown-headed cowbird Molothrus ater. Under the hypotheses 1 or 3 we predicted brood parasitism to be negatively associated with nest predation across species, whereas this relation is expected to be positive if hypotheses 2 or 4 are true. We demonstrate that independent of host suitability, nest location, habitat type, length of the nestling period, body mass and similarity among species due to common ancestry, species experiencing relatively high levels of nest predation suffered lower levels of cowbird parasitism. Our results suggest a previously ignored role for nest predation suffered by hosts on the dynamics of the coevolutionary relationships between hosts and avian brood parasites. Co-ordinating editor: Dr. F. Stuefer  相似文献   

15.
A field study of the breeding ecology of the Japanese aucha perch, Siniperca kawamebari, and brood parasitism by the Japanese minnow, Pungtungia herzi, on nests of the perch was carried out from 1989 to 1991. Observations of perch nests under natural conditions in 1990 showed that brood parasitism by the minnow was concentrated on host nests in which nest owners had just begun their nesting cycle. When spawned in a perch nest with recently spawned perch eggs, parasite eggs always hatched earlier than host eggs. An experiment with imitation perch eggs in 1991 confirmed that changing colour of host eggs was the cue for the parasites to distinguish between different developmental stages of host eggs. Parasite eggs rapidly disappeared without guarding by a host male (Baba et al. 1990). This loss was caused by predation by fishes. Parasite fry left the nest immediately after hatching, so parasite eggs spawned in a host nest in an early stage should be well guarded until they hatch. In the field, minnows deposited their eggs in perch nests which had larger numbers of newly spawned perch eggs. Since the perch males always deserted their nests when their own eggs disappeared, the parasite's choice of host nests with larger numbers of host eggs may ensure survival of the parasite eggs. The timing of egg deposition and choice of host nest by the minnow appear to be adaptive in terms of brood parasitism on nests of the perch.  相似文献   

16.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

17.
Bill M. Strausberger 《Oecologia》1998,116(1-2):267-274
I studied relationships between temporal patterns of host availability, brood parasitism, and egg mass for the parasitic brown-headed cowbird (Molothrus ater). At a study site consisting largely of edge habitat in north-eastern Illinois, I found 834 bird nests from 27 species. A total of 407 cowbird eggs and nestlings were found in these nests over three laying seasons. Nearly all (n= 379; 93%) were found in the nests of seven host species. For these species and all taken together, weekly nest availability generally decreased whereas parasitism frequency generally increased throughout the cowbird laying season, but the proportions of nests parasitized and the mean number of cowbird eggs in them did not. Additionally, no correlation was found between the proportions of nests parasitized and nest availability. Cowbird egg mass generally increased throughout the laying season, indicating that foraging conditions improved and that, early in the laying season, egg mass and quality may be less important than quantity. Consistently high weekly levels of parasitism indicate that cowbird reproduction was less limited by resources needed for egg production and more by the availability of suitable host nests. Fluctuating weekly host availabilities suggest that previously established, constant rates of cowbird egg laying would produce an excess of eggs during periods of low host availability. Further, the low frequency of parasitism (1%) of nests in stages too advanced for successful parasitism, and of abandoned nests, is consistent with the hypothesis that cowbirds' consistently high rate of egg production helps assure an egg is available when an appropriate nest is found. Frequently, nests were parasitized multiple times, raising the possibility that cowbirds were interfering with their own reproduction. A diverse host community increases the possibility that a decline of any one host species is unlikely to affect cowbird reproduction significantly. Received 11 July 1997 / Accepted: 31 March 1998  相似文献   

18.
We assessed whether nest size affects the probability of nest loss using dyads of large and small (large being twice the size of small) inactive Great Reed Warbler Acrocephalus arundinaceus nests placed at similar sites in Great Reed Warbler territories. Large nests were not predated significantly more frequently than small nests. Experimentally enlarged active Great Reed Warbler nests suffered non‐significantly higher predation compared with non‐manipulated control nests. Our experiments did not support the nest‐size hypothesis and suggested that nest size does not appear to be a factor affecting the risk of nest predation in this species. The probability of brood parasitism by the Common Cuckoo Cuculus canorus was also unaffected by experimental nest enlargement, supporting the commonly accepted hypothesis that the Common Cuckoo searches for suitable host nests by host activity during nest building rather than nest size.  相似文献   

19.
Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con‐ and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.  相似文献   

20.
It has been suggested that prothonotary warblers, Protonotaria citrea, respond adaptively to brood parasitism by brown-headed cowbirds, Molothrus ater, even though they lack historical habitat and range overlap with cowbirds. I studied behaviours functioning as potential defences against brood parasitism in the prothonotary warbler, a cavity-nesting host species. Opening sizes preferred by prothonotary warblers were not small enough to exclude cowbirds, and warblers were parasitized heavily in nests with larger openings. Male and female prothonotary warblers were always away from their nests before sunrise when cowbirds laid eggs in their nests. Prothonotary warblers infrequently (∼6% of 560 nests) deserted nests that were parasitized during the egg-laying period, but frequently (56% of 151 nests) deserted nests that were parasitized before a female warbler laid her first egg. Prothonotary warblers also deserted 60-70% of nests where a cowbird egg, warbler egg or die were experimentally added before egg laying. However, the experimental addition of one of these three objects during the egg-laying period did not elicit desertion. The desertion of parasitized nests was not affected by nest site availability as has been reported elsewhere in the literature. This lack of a response to brood parasitism by prothonotary warblers may be an example of evolutionary lag, because it is likely that they have only recently been exposed to widespread parasitism, and they accept parasitism at a high cost to their own reproductive success. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号