首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

2.
The administration of acetate or sulfanilamide depressed the porphyric response of rats to 3,5-dicarbethoxy-1,4-dihydrocollidine. The induction of δ-aminolevulinate synthetase (EC 2.3.1.37) in porphyric rats was decreased by acetate administration and δ-aminolevulinate synthetase activity in hepatic homogenates was inhibited by acetate. Succinate reversed the inhibition by acetate in vitro. Since an alteration of heme biosynthesis by acetate was observed, the effect of acetate on the induction of hepatic microsomal cytochrome P-450 and microsomal mixed-function oxidase by phenobarbital was examined. Acetate prevented the induction of hepatic mixed-function oxidase and cytochrome P-450 by phenobarbital. Unlike the action of other inhibitors of hepatic heme biosynthesis, acetate also prevented the induction by phenobarbital of NADPH-cytochrome c reductase (EC 1.6.99.3). These findings suggest that acetate may be inhibiting heme biosynthesis by effects on δ-aminolevulinate synthetase, the rate-limiting step in heme biosynthesis, by alteration of the induction of this enzyme and by a direct effect on the enzymic reaction itself. It is suggested that acetate may be involved in the glucose effect related to the inhibition of the induction of δ-aminolevulinate synthetase.  相似文献   

3.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

4.
Hepatic heme metabolism was examined in selenium (Se)-deficient and Se-adequate (control) rats. Administration of phenobarbital stimulated heme synthesis in the liver in both Se-deficient and Se-adequate rats. In contrast to these results, phenobarbital increased microsomal heme oxygenase (MHO) activity six- to eightfold in Se-deficient but not control rats. These data suggest that the previously reported abnormalities of cytochrome P-450 induction in Se-deficient rats are related to increased degradation of hepatic heme.  相似文献   

5.
Acute hydrazine exposure elevated rat liver triacylglycerol content and produced a rapid rise in triacylglycerol production from sn-[1,3-14C]glycerol 3-phosphate by liver homogenate and microsomal fractions. Hydrazine treatment also increased the incorporation of [1,3-14C]glycerol into hepatic triacylglycerol by the intact animal. Homogenates of hepatocyte monolayers exposed to hydrazine in vitro also exhibited an increased capacity to form triacylglycerol from sn-[1,3-14C]glycerol 3-phosphate. Hydrazine-dependent increases in hepatic triacylglycerol production measured in vitro correlated well with an increase in microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) activity. Therefore, the fatty liver associated with hydrazine exposure may be explained in part by a rise in the enzymatic capacity of hepatic triacylglycerol biosynthesis.  相似文献   

6.
1. The detergent Triton X-100 activates UDP glucuronyltransferase from rat liver in vitro six- to seven-fold with p-nitrophenol as substrate. The enzyme activity when measured in the presence of Triton X-100 is increased significantly by pretreatment of male rats with phenobarbital for 4 days (90mg/kg each day intraperitoneally). If no Triton X-100 is applied in vitro such an increase could not be shown. In all further experiments the enzyme activity was measured after activation by Triton X-100. 2. The K(m) of the enzyme for the substrate p-nitrophenol does not change on phenobarbital pretreatment. 3. When the microsomal fraction from the liver of untreated rats is subfractionated on a sucrose density gradient, 47% of the enzyme activity is recovered in the rough-surfaced microsomal fraction, which also has a higher specific activity than the smooth-surfaced fraction. 4. Of the increase in activity after the phenobarbital pretreatment 50% occurs in the smooth-surfaced fraction, 19% in the rough-surfaced fraction and 31% in the fraction located between the smooth- and rough-surfaced microsomal fractions on the sucrose density gradient. 5. The latency of the enzyme in vitro, as shown by the effect of the detergent Triton X-100, is discussed in relation to the proposed heterogeneity of UDP glucuronyltransferase.  相似文献   

7.
Cimetidine, a substituted imidazole, is an inhibitor of hepatic cytochrome P-450-mediated drug metabolism in rats and humans. We investigated the effect of cimetidine on phenobarbital induction of hepatic microsomal aminopyrine N-demethylase activity in the rat. Phenobarbital induction of aminopyrine N-demethylase was log-linear in the range of 1-6 mg/kg/day and the ED50 was approximately 3 mg/kg/day. Cimetidine 75 mg/kg (four times a day) attenuated the induction of aminopyrine N-demethylase activity by 58% in low dose (3 mg/kg/day) but not in high dose (40 mg/kg/day) phenobarbital treated rats. This result could not be explained by residual inhibition of enzyme activity by cimetidine and suggests that cimetidine affects the induction of hepatic cytochrome P-450 by low dose phenobarbital.  相似文献   

8.
Liver microsomes, isolated from rats which had been treated with phenobarbital in vivo, were found to exhibit increased activities of oxidative demethylation and TPNH-cytochrome c reductase and an increased amount of CO-binding pigment. Simultaneous administration of actinomycin D or puromycin abolished the phenobarbital-induced enzyme synthesis. Increased rate of Pi32 incorporation into microsomal phospholipid was the first sign of phenobarbital stimulation and appeared 3 hours after a single injection of this drug. Microsomes were divided into smooth-surfaced and rough-surfaced vesicle fractions. The fraction consisting of smooth-surfaced vesicles exhibited the greatest increase in protein content and oxidative demethylation activity after phenobarbital administration in vivo. Ultrastructural studies revealed that drug treatment also gave rise to proliferation of the endoplasmic reticulum in the hepatic parenchymal cells, first noticed after two phenobarbital injections. The phenobarbital-induced synthesis of the metabolizing enzymes is discussed with special reference to the relationship to the stimulated synthesis of the endoplasmic membranes.  相似文献   

9.
Accelerated hepatic haem catabolism in the selenium-deficient rat.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Hepatic microsomal cytochrome P-450 concentrations are lower in selenium-deficient rats treated with phenobarbital for 4 days than in similarly treated control rats. 2. No defect in haem synthesis was found on the basis of measurements of delta-aminolaevulinate synthase (EC 2.3.1.37), delta-aminolaevulinate dehydratase (EC 4.2.1.24) and ferrochelatase (EC 4.99.1.1) activities, and urinary excretion of delta-aminolaevulinate, porphobilinogen, uroporphyrin and coproporphyrin. 3. No defect in apo-(cytochrome P-450) separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. An increase in haem catabolism was found. An 8-fold increase in hepatic microsomal haem oxygenase (EC 1.14.99.3) activity occurred in selenium-deficient rats after phenobarbital treatment, compared with a less than 2-fold increase in control rats. Also excretion of 14CO in the breath after administration of delta-amino[5-14C]laevulinate was greater by phenobarbital-treated selenium-deficient rats than by similarly treated controls. 5. These studies demonstrate that the defective induction of cytochrome P-450 by phenobarbital in selenium-deficient rats is accompanied by increased haem catabolism. This could be due to increased breakdown of cytochrome P-450 or to catabolism of haem before it attaches to the apo-cytochrome. The role of selenium in stabilizing cytochrome P-450 and/or in protecting haem from breakdown remains to be determined.  相似文献   

10.
Disulfiram and diethyldithiocarbamate were administered to rats for 4 days alone (300 mg/kg, daily, per os) or in combination with phenobarbital (80 mg/kg, daily, i.p.), in order to observe the effects of these compounds on the microsomal membrane components and on the mixed-function oxygenase system. Both disulfiram and diethyldithiocarbamate increased the liver to body weight ratio, and the total hepatic protein content. Disulfiram significantly increased also the microsomal protein and phospholipid contents. Diethyldithiocarbamate and disulfiram partially prevented the increase of microsomal protein and phospholipid contents caused by phenobarbital. Disulfiram and diethyldithiocarbamate decreased the amount of cytochrome P-450 and P-420, and the activity of p-nitroanisole O-demethylase. These changes were more pronounced after diethyldithiocarbamate than after disulfiram treatment. On the contrary, the activity of NADPH-cytochrome c reductase was enhanced only by disulfiram. The induction by phenobarbital of cytochrome P-450 and p-nitrosanisole O-demethylase was partially prevented on concomitant treatment with disulfiram and diethyldithiocarbamate. These compounds. however, had an additive effect with phenobarbital in enhancing the microsomal NADPH-cytochrome c reductase activity.  相似文献   

11.
In rats treated with phenobarbital for 3 days and simultaneously fed a semisynthetic diet containing 1.0% orotic acid, the extent of the increases in liver microsomal phosphatidylcholine, phosphatidylethanolamine, total RNA, total protein, and cytochrome P-450 were significantly greater than they were in rats treated identically with phenobarbital but without dietary orotic acid. This is attributed primarily to the stimulation of hepatic phosphatidylcholine synthesis by dietary orotic acid. In the absence of phenobarbital, orotic acid was shown to cause some increase in liver smooth endoplasmic reticulum components, but not cytochrome P-450. Orotic acid also decreased the activity of microsomal phosphatidylethanolamine N-methyltransferase, which may have contributed to the increase in the microsomal content of phosphatidylethanolamine. The hypothesis is advanced that phospholipid availability is a limiting factor in the hepatic response to phenobarbital. When more phospholipid is available to provide the structural framework for biogenesis of endoplasmic reticulum, all of the hepatic actions of phenobarbital, including induction of cytochrome P-450, are amplified.  相似文献   

12.
The ability of phenobarbital to induce the expression and activity of microsomal drug monooxygenases in the liver presents one of the most important issues in the field of chemical interactions and in the toxicity of xenobiotics. The model of rat liver injury induced by a single dose of thioacetamide (500 mg/kg intraperitoneally) was used to study the effect of phenobarbital (80 mg/kg/day intraperitoneally) for 5 days prior to thioacetamide. Serum parameters of liver injury such as aspartate aminotransferase activity, gamma-glutamyl transferase activity and the total bilirubin levels, as well as the activities of hepatic FAD and cytochrome P450 microsomal monooxygenases, were assayed in 2- and 12-month-old rats. Samples of blood and liver were obtained from controls (injected at 0 h with 0.5 ml of 0.9% NaCl) and at 12, 24, 48, 72 and 96 h of thioacetamide intoxication either to non-treated or phenobarbital pretreated rats. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment was demonstrated at morphological level, and by significant increases in the activities of serum aspartate aminotransferase and gamma-glutamyl transferase, and in the levels of total bilirubin. The extent of potentiation of thioacetamide-induced liver injury by phenobarbital pretreatment was similar in both age groups. Microsomal FAD monooxygenase activity, the enzyme responsible for thioacetamide biotransformation, was significantly enhanced (twofold) by phenobarbital pretreatment, and also underwent a further increase following thioacetamide, preceding the peak of necrosis. Cytochrome P450 monooxygenases were induced by phenobarbital pretreatment more than sixfold, and sharply decreased when phenobarbital was withdrawn and thioacetamide administered, showing at 48 h intoxication values close to basal. Phenobarbital pretreatment potentiated thioacetamide necrogenicity, and this potentiation was parallel to the induction of the microsomal FAD monooxygenase system, both by phenobarbital and by thioacetamide itself. The extent of thioacetamide-induced liver injury was significantly higher in 12-month-old rats, but the effect of phenobarbital pretreatment was similar in both age groups.  相似文献   

13.
Administration of the anti-hypercholesterolaemic drug clofibrate to the rat increases the activity of carnitine acetyltransferase (acetyl-CoA-carnitine O-acetyltransferase, EC 2.3.1.7) in liver and kidney. The drug-mediated increase in enzyme activity in hepatic mitochondria shows a time lag during which the activity increases in the microsomal and peroxisomal fractions. The enzyme induced in the particulate fractions is identical with one normally present in mitochondria. The increase in enzyme activity is prevented by inhibitors of RNA and general protein synthesis. Mitochondrial protein-synthetic machinery does not appear to be involved in the process. Immunoprecipitation shows increased concentration of the enzyme protein in hepatic mitochondria isolated from drug-treated animals. In these animals, the rate of synthesis of the enzyme is increased 7-fold.  相似文献   

14.
After force-feeding a protein-free diet to male rats for 5-7 days a substantial (2.4-fold) increase in the specific activity of the liver microsomal enzyme UDP-glucuronyltransferase (EC 2.4.1.17) was observed. A similar activation of the enzyme occurred when rats were fed on a low-protein (5%, w/w, casein) diet for 60 days. Although both the short- and long-term protein-deficient diets decreased the contents of microsomal protein and phospholipid in liver tissue they did not significantly alter the ratio of these major membrane components. Protein deficiency profoundly altered the phospholipid composition of microsomal membranes. The most striking difference in microsomal phospholipid composition between control and protein-deficient rats was their content of lysophosphatides. Whereas microsomal membranes from protein-deficient rats contained significant proportions of lysophosphatidylcholine and lysophosphatidylethanolamine very little or no lysophosphatides were detected in control preparations. Pretreatment of microsomal fractions from normal rats with phospholipase A markedly increased their UDP-glucuronyltransferase activity as did their pretreatment with lysophosphatidylcholine. It is concluded that the quantities of lysophosphatides present in microsomal membranes from protein-deficient rats were sufficient to have caused the increased UDP-glucuronyltransferase activities of these preparations. Evidence is presented suggesting that these changes in microsomal phospholipid composition and UDP-glucuronyltransferase activity caused by protein deficiency reflect changes that occur in vivo. The possible physiological significance of these findings is discussed.  相似文献   

15.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

16.
To study the relationship between the dose of phenobarbital (PB) and the magnitude of its effects on microsomal enzymes, cytochrome P-450, UDP-glucuronyl transferase (UDPGT), and glucose-6-phosphatase (G6P) activities were determined in liver homogenate and microsome preparations from control rats and rats treated for 6 days with PB at doses ranging from 1 to 125 mg/kg/day. Both P-450 and UDPGT activities were enhanced by PB in a dose-related fashion. However, while the lowest dose of the drug to produce significant induction of both enzymes was the same (3 mg/kg), maximal induction of P-450 (214%) and UDPGT (285%) was obtained with different doses of PB, namely 75 and 125 mg/kg, respectively. UDPGT induction could equally be demonstrated regardless of whether "native" enzyme or enzyme activated by UDP-N-acetyl glucosamine, digitonin or deoxycholate was employed. In contrast to these inducing effects of the drug on P-450 and UDPGT, PB treatment resulted in a dose-related inhibition of G6P activity. The inhibitory effect was observed with both "native" and deoxycholate-activated enzymes, and could be demonstrated whether the data were expressed as enzyme specific activity (nanomoles per minute per milligram microsomal protein) or as total G6P activity (micromoles per minute per 100 g body weight). These results indicate that: (I) enzyme induction by PB is dose-related; (ii) induction of both P-450 and UDPGT is obtained in the rat with doses of the drug similar to those given to man; and (iii) observed inhibition of G6P activity by PB does not solely reflect an enzymatic dilution secondary to the proliferated endoplasmic reticulum.  相似文献   

17.
Rats treated with ethynyloestradiol have marked hypolipidaemia: serum cholesterol is decreased to 5%, triacylglycerol to 10% and phospholipid to 70% of control concentrations. Loss of serum cholesterol follows an exponential decay, with a half-life of 1.13±0.09 days. After 4 days of treatment, serum cholesterol concentrations remain relatively constant (ranging from 1 to 20mg/100ml) for at least 30 days. There is a concomitant 20-fold decrease in the d<1.21 fraction of serum proteins and a similar decrease in serum apolipoproteins as measured by sodium dodecyl sulphate/10%-polyacrylamide-gel electrophoresis. The activity of hepatic microsomal acyl-CoA–cholesterol O-acetyltransferase (EC 2.3.1.26) was significantly increased by ethynyloestradiol treatment (P<0.05). This activation caused hepatic cholesteryl esters containing mainly C18:1 fatty acids to increase linearly as serum cholesterol concentrations decreased (r=0.9675, P<0.001). Triton WR-1339, a non-ionic detergent that inhibits lipoprotein catabolism, was used to estimate hepatic lipid secretion by measuring the increment in serum lipids after its administration. At 15h after Triton WR-1339 administration, serum cholesterol concentrations were increased equally in both control and ethynyloestradiol-treated rats. In contrast, the increment of serum triacylglycerol of treated rats was 40% of that found in control rats, indicating that ethynyloestradiol inhibits hepatic triacylglycerol secretion. Triton WR-1339 inhibited the oestrogen activation of hepatic microsomal acyl-CoA–cholesterol O-acyltransferase and restored hepatic cholesteryl ester concentrations to normal values. These data suggest that ethynyloestradiol and its pharmacological `antagonist' Triton WR-1339 alter hepatic triacylglycerol secretion via a mechanism associated with changes in hepatic cholesterol esterification.  相似文献   

18.
The activity of serum lecithin-cholesterol acyltransferase was increased on administration of phenobarbital to the rat. This effect was dependent on dose and elapsed time after administration of the drug. Phenobarbital did not stimulate lecithin-cholesterol acyltransferase activity when added to serum from normal animals in vitro. Presumably, phenobarbital increased serum lecithin-cholesterol acyltransferase activity by induction of the microsomal enzyme and subsequent secretion by the liver.  相似文献   

19.
The effects of neonatal exposure to phenobarbital during the first five days after birth on the enzymatic activity of the adult male and female rat liver P450-dependent monooxygenase system were investigated. Although liver weight per 100 grams of body weight and total hepatic microsomal protein content were not altered in adult rats treated neonatally with phenobarbital, both sexes did show significant increases in cytochrome P450 content, cytochrome P450 reductase activity, cytochrome c reductase activity, ethoxycoumarin-O-deethylase activity and in the activity of a specific glucuronyl-transferase. Several of these activities were increased to a larger extent in the females, suggesting that females may be more sensitive to this phenomenon.  相似文献   

20.
Estrogen (diethylstilbestrol-DES or allylestrenol-AE) treatment applied to rats of both sexes during liver regeneration following subtotal hepatectomy had a long lasting influence on the inducibility by phenobarbital of the hepatic microsomal enzyme system of the females. The enzyme activities of the DES-treated females differed hardly from the baseline two weeks after treatment, but increased almost two-fold over control on induction with phenobarbital 5 and 7 weeks later. The AE-treated females showed a smaller although yet significant, enzyme activity increase only at 7 weeks. The influence of estrogens was negligible, and inhibitory rather than stimulatory, in the males. It appears that, in appropriate conditions, enzyme imprinting can also be induced in adult organisms, since, in all probability, availability for imprinting depends not so much on the age of the organism, as on the developmental state of the target cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号