首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The 12 kD FK506 binding protein FKBP12 is a cytosolic receptor for the immunosuppressant drugs FK506 and rapamycin. In addition to its critical role in drug-induced T-cell immunosuppression, FKBP12 associates physiologically with ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors, regulating their ability to flux calcium. We investigated a role for FKBP12 in male reproductive physiology on the basis of our identification of extremely high levels of [3H]FK506 binding in male reproductive tissues. MATERIALS AND METHODS: [3H]FK506 binding studies were performed to identify tissues enriched with FK506 binding sites. The abundant [3H]FK506 binding sites identified in the male reproductive tract were localized by [3H]FK506 autoradiography. FK506 affinity chromatography was employed to purify FKBP from epididymal fluid. Anti-FKBP12 Western analysis was used to confirm the identity of the purified FKBP. The binding of exogenous FKBP12 to sperm was evaluated by [32P]FKBP12 binding studies and [33P]FKBP12 autoradiography. The effect of recombinant FKBP12 on sperm motility was investigated using a Hamilton Thorne motility analyzer. RESULTS: Male reproductive tissues contained high levels of [3H]FK506 binding. The localization of [3H]FK506 binding sites to the tubular epithelium of the caput epididymis and the lumen of the cauda and vas deferens suggested that FKBP is released in the male reproductive tract. FKBP12 was purified from epididymal plasma by FK506 affinity chromatography. Radiolabeled FKBP12 specifically bound to immature but not mature sperm. In sperm motility studies, FKBP12-treated caput sperm exhibited double the curvilinear velocity of untreated controls. CONCLUSIONS: High levels of FKBP12 are released in the male reproductive tract and specifically associate with maturing sperm. Recombinant FKBP12 enhances the curvilinear velocity of immature sperm, suggesting a role for FKBP12 in motility initiation. The highest concentrations of soluble FKBP12 in the male reproductive tract occur in the lumen of the vas deferens, a site of sperm storage and the conduit for ejaculated sperm. Preservation of mammalian sperm for reproductive technologies may be optimized by supplementing incubation or storage media with FKBP12.  相似文献   

2.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   

3.
A binding assay was developed for measuring the affinity of FKBP12 ligands. A biotinylation signal sequence was fused to the 5' end of the human FKBP12 gene, and the fusion protein was expressed in Escherichia coli with biotin ligase. The fusion protein was immobilized in avidin-coated multiwell plates, and varying concentrations of test ligands were allowed to compete with [3H]FK506 for FKBP12 sites on the plate. The assay provided Kd values for FK520, 32-hydroxyethyl indolyl FK520, and 18-ene, 20-oxa FK520 that are in agreement with previously reported values. The assay provides a convenient and rapid method for the assessment of FKBP12 binding by small molecules.  相似文献   

4.
Dynamic NMR methods, such as differential line broadening and transferred NOE spectroscopy, are normally reserved for the study of small molecule ligand interactions with large protein receptors. Using a combination of isotope labeling and isotope edited NMR, we have extended these techniques to characterize interactions of a much larger protein/drug complex, FKBP-12/ FK506 with its receptor protein, calcineurin. In order to examine this multicomponent system by dynamic NMR methods, the 93 kDa, tightly bound FKBP-12/FK506/Cn complex was replaced with a lower affinity, rapidly exchanging system consisting of FKBP-12/FK506 (13 kDa), recombinant calcineurin subunit B (CnB) (20 kDa), and a synthetic peptide (4 kDa) corresponding to the B binding domain (BBD) of calcineurin catalytic subunit A (CnA). Analysis of 1H-13C HSQC data acquired for the FKBP-12/ 13C-FK506 and FKBP-12/13C-FK506/CnB/BBD complexes indicates that FKBP-12/FK506 and CnB/BBD are in fast exchange in the quaternary complex. Comparison of proton line widths shows significant broadening of resonances along the macrocycle backbone at 13-CH, 13-OMe, 15-OMe, 18-CH2, 20-CH, 21-CH, and 25-Me, as well as moderate broadening on the macrocycle backbone at 17-Me, 24-CH, and the pyranose 12-CH2 protons. The tri-substituted olefin and cyclohexyl groups also show moderate broadening at the 27-Me, 28-CH, and 30-CH2 positions, respectively. Unexpectedly, little line broadening was observed for the allyl resonances of FK506 in the quaternary complex, although 13C longitudinal relaxation measurements suggest this group also makes contacts with calcineurin. In addition, intermolecular transfer NOE peaks were observed for the allyl 37-CH2, 21-CH, 30-CH2, 13-OMe, 15-OMe, 17-Me, 25-Me, and 27-Me groups, indicating that these are potential sites on the FK506 molecule that interact with calcineurin.  相似文献   

5.
Methodology has been developed which gives a specific measure of the interaction of an SH2 domain with a phosphopeptide ligand using scintillation proximity assay (SPA) technology. Recombinant SH2 domains were expressed from a T7 RNA polymerase-based vector inEscherichia colias fusions to the C-terminus of the FK506-binding protein (FKBP) and purified from freeze-thaw lysates in high yield by affinity chromatography using immobilized phosphopeptides. For binding assays the phosphopeptide ligands were synthesized with a biotin tag and the FKBP fusion proteins were noncovalently radiolabeled with commercially available [3H]dihydroFK506. Complexes of tritiated SH2 fusion protein and biotinyl-phosphopeptide were then captured on streptavidin-coated SPA beads and counted. The modular protocol is an equilibrium technique that does not employ washing steps or specialized radiochemical syntheses required in other binding assays. The utility of the assay has been demonstrated in an examination of the ligand specificity of the SH2 domains of the tyrosine kinases ZAP70, Syk, and Lck. The methodology is potentially generalizable to any receptor–ligand interaction in which one component can be expressed as a fusion partner with FKBP and the other component can be captured on a SPA bead.  相似文献   

6.
The mechanism of FK506 immunosuppression has been proposed to proceed by formation of a tight-binding complex with the intracellular 12-kDa FK506-binding protein (FKBP12). The FK506-FKBP12 complex then acts as a specific high-affinity inhibitor of the intracellular protein phosphatase PP2B (calcineurin), interrupting downstream dephosphorylation events required for T-cell activation. Site-directed mutagenesis of many of the surface residues of FKBP12 has no significant effect on its affinity for calcineurin. We have identified, however, three FKBP12 surface residues (Asp-37, Arg-42, and His-87) proximal to a solvent-exposed segment of bound FK506 that may be direct contacts in the calcineurin complex. Site-directed mutagenesis of two of these residues decreases the affinity of FKBP12-FK506 for calcineurin (Ki) from 6 nM for wild-type FKBP12 to 3.7 microM for a R42K/H87V double mutant, without affecting the peptidylprolyl isomerase activity or FK506 affinity of the mutant protein. These FKBP12 mutations along with several substitutions on FK506 known to affect calcineurin binding form a roughly 100-A2 region of the FKBP12-FK506 complex surface that is likely to be within the calcineurin binding site.  相似文献   

7.
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-β (TGF-β1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.  相似文献   

8.
The complex of the immunosuppressant FK506 bound to FKBP-12 has been studied in solution using 1H and inverse-detected 13C NMR methods. The resonances of bound, 13C-labelled FK506 were assigned and a set of 66 intraligand NOE distance restraints were used to calculate the structure of the bound ligand by distance geometry and restrained molecular dynamics methods. The structure of bound FK506 in solution closely resembles that seen in the X-ray structure [17], except for the allyl region. The differences reflect the influence of intermolecular crystal contacts and have implications for interpretation of the interaction of the FK506/FKBP complex with its putative biological receptor.  相似文献   

9.
Multiple intracellular receptors of the FK506 binding protein (FKBP) family of peptidylprolyl cis/trans-isomerases are potential targets for the immunosuppressive drug FK506. Inhibition of the protein phosphatase calcineurin (CaN), which has been implicated in the FK506-mediated blockade of T cell proliferation, was shown to involve a gain of function in the FKBP12/FK506 complex. We studied the potential of six human FKBPs to contribute to CaN inhibition by comparative examination of inhibition constants of the respective FK506/FKBP complexes. Interestingly, these FKBPs form tight complexes with FK506, exhibiting comparable dissociation constants, but the resulting FK506/FKBP complexes differ greatly in their affinity for CaN, with IC50 values in the range of 0.047-17 microM. The different capacities of FK506/FKBP complexes to affect CaN activity are partially caused by substitutions corresponding to the amino acid side chains K34 and I90 of FKBP12. Only the FK506 complexes of FKBP12, FKBP12.6, and FKBP51 showed high affinity to CaN; small interfering RNA against these FKBP allowed defining the contribution of individual FKBP in an NFAT reporter gene assay. Our results allow quantitative correlation between FK506-mediated CaN effects and the abundance of the different FKBPs in the cell.  相似文献   

10.
A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes. Coincubation with an FAAH inhibitor, URB-597, competitively displaced the [3H]MAEA on the FAAH microsomes. The released radiolabel was then detected through an interaction with the SPA beads. The assay is specific for FAAH given that microsomes prepared from cells expressing the inactive FAAH-S241A mutant or vector alone had no significant ability to bind [3H]MAEA. Furthermore, the binding of [3H]MAEA to FAAH microsomes was abolished by selective FAAH inhibitors in a dose-dependent manner, with IC50 values comparable to those seen in a functional assay. This novel SPA has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.  相似文献   

11.
A Pahl  U Keller 《The EMBO journal》1994,13(15):3472-3480
The nucleotide sequence of the region 5' to the fkbA gene, encoding the Streptomyces chrysomallus FK506 binding protein (FKBP-12), revealed an open reading frame (fkbB) encoding a protein of 312 amino acids, with an M(r) of approximately 33,000. FkbB and fkbA appear to be co-transcribed under the control of a promoter upstream of fkbB. The presumptive protein encoded by fkbB would be an FKBP (designated FKBP-33) consisting of two FK506 binding domains with 43 and 32% sequence identity to FKBP-12 and a signal peptide sequence characteristic of bacterial membrane lipoproteins. The portion of the gene comprising the two FKBP domains, as well as each individual domain, were expressed as fusion proteins in Escherichia coli and purified. Each expressed domain, as well as FKBP-33 itself, possesses peptidyl-prolyl cis-trans isomerase activity, though with much lower specific activities than FKBP-12. FKBP-33 is located in the cell membrane of S.chrysomallus and of other streptomycetes, as predicted from the presence of the signal peptide sequence. Pulse-chase experiments with radioactive palmitate in whole cells revealed significant labelling of FKBP-33, which probably carries palmitate at its N-terminus and an additional diacylglycerol residue attached to the N-terminal cysteine in thioether linkage. The two domains of FKBP-33 showed considerable homology with numerous eukaryotic and prokaryotic FKB domains. Calculations of phylogenetic relationships indicate with high probability that the two domains of the protein have arisen by a double gene duplication of fkbA lying in tandem to fkbB.  相似文献   

12.
13.
FKBP-12 mediates the immunosuppressive actions of FK506 and rapamycin, and modulates the activities of the ryanodine, IP3 and type 1 TGF-ss receptors. Additionally, FKBP-12 possesses cis-trans peptidylprolyl isomerase (rotamase) activity. We have discovered that recombinant FKBP-12 readily forms a dimer and a small amount of trimer under nonreducing conditions. A mutant with substitution at the sole cysteine residue of FKBP-12 (C23S) did not form dimers or trimers. Using mutants with 5% or less rotamase activity, the formation of dimers was independent of enzymatic activity. The formation of trimers was abrogated by a F36Y substitution, even though dimer formation was preserved. Dimers were also observed with native FKBP-12 that was detached from rabbit skeletal muscle ryanodine receptors using FK590. The multimers of FKBP-12 could interact with molecular targets distinctly from the FKBP-12 monomer, for example, by facilitating the assembly of multimeric receptors or coordinating the activity of receptor subunits.  相似文献   

14.
FKBP-12 is the major T cell binding protein for the immunosuppressive drugs FK506 and rapamycin. It is a member of the immunophilin family of proteins which are believed to play a role in immunoregulation and basic cellular processes involving protein folding and trafficking. The chromosomal assignment of the human FKBP-12 gene was determined by using the polymerase chain reaction to amplify an intron-containing region of the gene in purified DNA isolated from 42 human-rodent somatic cell hybrids. The results of this analysis indicated that the FKBP-12 gene resides on human chromosome 20.  相似文献   

15.
DNA gyrase is the target of coumarin and cyclothialidine antibacterials, which bind to the B subunit of the enzyme (GyrB). Currently available GyrB inhibitors have not been clinically successful, but their high in vitro potency against DNA gyrase has raised interest in the development of novel noncoumarin antibacterials acting at the same site. We report the development of a simple scintillation proximity assay (SPA) for the study of binding interactions between coumarin or noncoumarin antibacterials and GyrB, which prevents the needs of separation steps and can be run in microtiter plate formats. The assay is based on the detection of the binding of a radioligand, [3H]dihydronovobiocin, to a biotin-labeled 43-kDa fragment of GyrB (biotin-GyrB43), which is captured by streptavidin-coated SPA beads. The typical assay was conducted in 96-well microtiter plates, with final concentration of 10 nM for biotin-GyrB43, 20 nM for [3H]dihydronovobiocin, and 33 microg of SPA beads/well. From saturation experiments, an equilibrium dissociation constant (K(d)) for dihydronovobiocin of 8.10 nM was found. Displacement studies gave 50% inhibitory concentrations (IC(50)) of 42, 64, and 11 nM for novobiocin, dihydronovobiocin, and the cyclothialidine analogue GR122222X, respectively, consistent with previous findings. The assay was found to be robust to dimethyl sulfoxide up to 5% (v/v) and can be used for high-throughput screens of large chemical collections in the search of novel DNA gyrase inhibitors.  相似文献   

16.
Heparin binding site affinity and density on human spermatozoa were compared between fertile and infertile men with normal or abnormal results in the zona-free hamster ova-sperm penetration assay (SPA). A portion of fresh semen from fertile donors and potentially infertile men was processed through the SPA while the remainder of the ejaculate was used to quantitate heparin binding on spermatozoa. Saturation binding assays with [3H]heparin (15-375 nM) were analysed for 3 groups of men: (1) infertile patients with abnormal SPA results, (2) infertile patients with normal SPA results and (3) fertile donors. The heparin binding site density was significantly higher in men who possessed normal SPA results (infertile men and fertile donors) than in infertile men with abnormal scores in the SPA. There was no difference in heparin binding affinity between the three groups. These findings suggest that the heparin binding-site density may be related to the ability of human spermatozoa to undergo successfully the acrosome reaction.  相似文献   

17.
A Ferrara  R Cafferkey  G P Livi 《Gene》1992,113(1):125-127
Rapamycin (Rm) and FK506 are macrolide antifungal agents that exhibit potent immunosuppressive properties in higher eukaryotes which are mediated through interaction with specific receptor proteins (FKBPs or RBPs, for FK506- and Rm-binding proteins, respectively). These proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro which is inhibited by the binding of Rm and FK506. We previously isolated a gene encoding an RBP from Saccharomyces cerevisiae, and demonstrated that null mutations in this gene (called RBP1) result in a recessive Rm-resistant (RmR) phenotype. We now have cloned the Candida albicans RBP1 gene via complementation of the RmR phenotype in S. cerevisiae. The predicted C. albicans RBP exhibits 61%, 52% and 49% amino acid (aa) sequence identity with RBPs (FKBPs) from S. cerevisiae, Neurospora crassa and human cells (FKBP-12), respectively. Furthermore, several of the aa residues identified as being important for drug binding in human FKBP-12 are conserved within the C. albicans RBP.  相似文献   

18.
We have characterised the stability, binding and enzymatic properties of three human FK506 binding proteins (FKBP-12) differing only by the length and sequence of their N-terminus. One construct has a short hexa-his tag (6H-FKBP12); the second longer fusion protein (6HL-FKBP12) contains an additional thrombin protease cleavage site; the third has the long fusion tag removed and is essentially native FKBP-12 (cFKBP12). The proteins were purified both under native conditions and also using a refolding protocol. All three natively purified proteins have, within experimental error, the same peptidyl-prolyl isomerase (PPIase) activity (k(cat)/K(m) approximately 1 x 10(6)M(-1)s(-1)), and bind a natural inhibitor, rapamycin, with the same high affinity (K(d) approximately 6 nM). However, refolding of the protein containing the longer tag in vitro results in reduced PPIase activity (the k(cat)/K(m) was reduced from 1 x 10(6)M(-1)s(-1) to 0.81 x 10(6)M(-1)s(-1)) and a 6-fold affinity loss for rapamycin. Addition of both the long and short N-terminal his-tags slows the refolding kinetics of FKBP-12. However, the shorter his-tagged fusion protein regains fully native activity (> or =95%) while the longer regains only approximately 80-85% of native activity. Equilibrium urea denaturation titrations, isothermal titration calorimetry (ITC), analytical gel-filtration, and fluorescence binding data show that this loss of activity is not due to gross misfolding events, but is rather caused by the formation of a stable but subtly misfolded protein that has reduced peptidyl-prolyl isomerase (PPIase) activity and reduced affinity for rapamycin. The difference in behaviour between the in vitro refolded and native forms is due to the dominant role of the cellular chaperone/folding machinery.  相似文献   

19.
Binding sites were solubilized from human placental membrane using 1.5% sodium cholate and were assayed using polyethylene glycol precipitation. These soluble binding sites had properties of an adenosine A1 binding site. 2-[3H]Chloroadenosine and N-[3H]-ethylcarboxamidoadenosine (NECA) binding were time dependent and reversible. Scatchard plots indicate two classes of binding sites with Kd values of 6 and 357 nM for 2-chloro[8-3H]adenosine and 0.1 and 26 nM with [3H]NECA. The specificity of [3H]NECA binding was assessed by the ability of adenosine analogs to complete for binding sites. Using this approach the estimated IC50 values were 60 nM for (R-PIA), 160 nM for S-PIA, 80 nM for NECA, and 20 nM for 2-chloroadenosine. Binding of [3H]NECA to the soluble sites is inhibited to 48% of the control value by 100 microM guanylyl-5'-imidodiphosphate (Gpp(NH)p). The IC50 value for NECA binding to the soluble binding site was increased from 80 nM to 1500 by Gpp(NH)p. There was a shift of binding affinity from a mixture of high and low affinity to only low affinity with 100 microM Gpp(NH)p. Despite these alterations a NECA prelabeled molecular species of 150 kDa did not decrease in molecular weight upon the addition of 100 microM Gpp(NH)p during high-performance liquid chromatography on a Superose 12 column. Other evidence to support the concept of preferential solubilization and assay of a small population of A1 binding sites was obtained. Following solubilization adenosine A2-like binding sites could be detected only in reconstituted vesicles. The existence of small amounts of A1 binding sites in intact human placental membranes was directly demonstrated using the A1 agonist ligand N6-[3H]cyclohexyladenosine and the A1 antagonist ligand 8-[3H]cyclopentyl-1,3-dipropylxanthine. JAR choriocarcinoma cells have "A2-like" membrane binding sites. In contrast to placental membranes, only A2-like binding sites could be solubilized from JAR choriocarcinoma cells. These observations indicate that human placental membranes contain adenosine A1 binding sites in addition to A2-like binding sites. These sites are guanine nucleotide sensitive, but do not shift to a lower molecular weight form upon assumption of a low affinity state.  相似文献   

20.
A G DiLella  R J Craig 《Biochemistry》1991,30(35):8512-8517
FKBP-12, the major T-cell binding protein for the immunosuppressive agents FK506 and rapamycin, catalyzes the interconversion of the cis and trans rotamers of the peptidyl-prolyl amide bond of peptide and protein substrates. The function of rotamase activity in cells and the role of FKBP-12 in immunoregulation is uncertain. In this paper we report the cloning and characterization of the human chromosomal FKBP-12 gene and four processed FKBP-12 pseudogenes. The FKBP-12 gene is 24 kilobases in length and contains five exons. The protein-coding region of the gene is divided into four exon modules that correlate with the structural and functional domains of the protein. The novel structure of FKBP-12 resulting from the topology of the antiparallel beta-sheet is the topological crossing of two loops that are encoded by separate exons. Separate exons also encode the antiparallel beta-sheet and alpha-helical region that define the drug-binding pocket and enzyme activity site of FKBP-12. The exon organization of the FKBP-12 gene also provided insight into the genetic evolution of the immunophilin family. Knowledge of the FKBP-12 gene structure will enable inactivation of this gene by homologous recombination in cells to provide a model to study the role of FKBP-12 in immunoregulation and normal cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号