首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the period from January 1981 to December 2010, 1068 small‐molecule new chemical entities (NCEs) were introduced, of which ca. 34% are either a natural product or a close analogue. While this metric reflects the impact natural products have played in delivering new chemical starting points (leads) for the pharmaceutical industry, it does not capture the decline this approach has suffered over the last 20 years as the high‐throughput screening (HTS) of pure compound libraries has become more popular. An impediment to natural‐product drug discovery in the HTS paradigm is the lack of a clear strategy that enables front‐loading of an extract or fraction's chemical constituents so that they are compliant with lead‐ and drug‐like chemical space. To address this imbalance, an approach based on lipophilicity, as measured by clog P has been developed that, together with advances being made in isolation and structural elucidation, can afford natural product leads in timelines compatible with pure compound screening.  相似文献   

2.
3.
High-throughput screening (HTS) of chemical libraries has become a critical tool in basic biology and drug discovery. However, its implementation and the adaptation of high-content assays to human embryonic stem cells (hESCs) have been hampered by multiple technical challenges. Here we present a strategy to adapt hESCs to HTS conditions, resulting in an assay suitable for the discovery of small molecules that drive hESC self-renewal or differentiation. Use of this new assay has led to the identification of several marketed drugs and natural compounds promoting short-term hESC maintenance and compounds directing early lineage choice during differentiation. Global gene expression analysis upon drug treatment defines known and novel pathways correlated to hESC self-renewal and differentiation. Our results demonstrate feasibility of hESC-based HTS and enhance the repertoire of chemical compounds for manipulating hESC fate. The availability of high-content assays should accelerate progress in basic and translational hESC biology.  相似文献   

4.
Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products.  相似文献   

5.
High-throughput screening (HTS) using high-density microplates is the primary method for the discovery of novel lead candidate molecules. However, new strategies that eschew 2D microplate technology, including technologies that enable mass screening of targets against large combinatorial libraries, have the potential to greatly increase throughput and decrease unit cost. This review presents an overview of state-of-the-art microplate-based HTS technology and includes a discussion of emerging miniaturized systems for HTS. We focus on new methods of encoding combinatorial libraries that promise throughputs of as many as 100,000 compounds per second.  相似文献   

6.
Natural product substances have historically served as the most significant source of new leads for pharmaceutical development. However, with the advent of robotics, bioinformatics, high throughput screening (HTS), molecular biology-biotechnology, combinatorial chemistry, in silico (molecular modeling) and other methodologies, the pharmaceutical industry has largely moved away from plant derived natural products as a source for leads and prospective drug candidates. Can, or will, natural products ever recapture the preeminent position they once held as a foundation for drug discovery and development? The challenges associated with development of natural products as pharmaceuticals are illustrated by the Taxol® story. Several misconceptions, which constrain utilization of plant natural products, for discovery and development of pharmaceuticals, are addressed to return natural products to the forefront.  相似文献   

7.
The Nobel Prize in Physiology or Medicine 2015 was awarded for discoveries related to the control of parasitic diseases using natural products of microbial and plant origin. In current drug discovery programs, synthesized compounds are widely used as a screening source; however, this award reminds us of the importance of natural products. Here, we introduce our phenotypic screening methods based on changes in cell morphology and discuss their effectiveness and impact for natural products in drug discovery.  相似文献   

8.
Recently, high-throughput screening (HTS) has become the mainstream technique for drug discovery. Compounds that are synthesized by combinatorial chemistry might be more suitable than natural products to apply to HTS, because the purification procedure is a drawback of using natural products. Nevertheless, natural products remain an extremely important source of drugs. To overcome the demerits of natural products, we are constructing the RIKEN Natural Products Depository (NPDepo) that is focused primarily on microbial metabolites. In this review, I describe (i) engineering pathways for biosynthetic gene clusters of microbial metabolites, (ii) construction of fraction libraries of microbial metabolites, and (iii) the development of a new screening system using a chemical array and a protein library produced by GLORIA.  相似文献   

9.
High-throughput screening (HTS) involves testing of compound libraries against validated drug targets using quantitative bioassays to identify 'hit' molecules that modulate the activity of target, which forms the starting point of a drug discovery effort. Eicosanoids formed via cyclooxygenase (COX) and lipoxygenase (LOX) pathways are major players in various inflammatory disorders. As the conventional non-steroidal anti-inflammatory drugs (NSAIDs) that inhibit both the constitutive (COX-1) and the inducible (COX-2) isoforms have gastric and renal side effects and the recently developed COX-2 selective anti-inflammatory drugs (COXIBs) have cardiac side effects, efforts are being made to develop more potent and safer antiinflammatory drugs. Current assay methods for these enzymes, such as oxygraphic, radioisotopic, spectrophotometric etc. are not compatible for screening of large number of compounds as in drug discovery programs. In the present study, HTS-compatible assays for COX-1, COX-2 and 5-LOX were developed for screening of compound libraries with the view to identify potential anti-inflammatory drug candidates. A spectrophotometric assay involving co-oxidation of tetramethyl-p-phenylene diamine (TMPD) during the reduction of prostaglandin G2 (PGG2) to PGH2 was adopted and standardized for screening of compounds against COX-1 and COX-2. Similarly, the HTS-compatible FOX (ferrous oxidation-xylenol orange) based spectrophotometric assay involving the formation of Fe3+/xylenol orange complex showing absorption in the visible range was developed for screening of compounds against 5-LOX.  相似文献   

10.
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping.  相似文献   

11.

Background

In view of the current widespread use of and reliance on a single schistosomicide, praziquantel, there is a pressing need to discover and develop alternative drugs for schistosomiasis. One approach to this is to develop High Throughput in vitro whole organism screens (HTS) to identify hits amongst large compound libraries.

Methodology/Principal Findings

We have been carrying out low throughput (24-well plate) in vitro testing based on microscopic evaluation of killing of ex-vivo adult S. mansoni worms using selected compound collections mainly provided through the WHO-TDR Helminth Drug Initiative. To increase throughput, we introduced a similar but higher throughput 96-well primary in vitro assay using the schistosomula stage which can be readily produced in vitro in large quantities. In addition to morphological readout of viability we have investigated using fluorometric determination of the reduction of Alamar blue (AB), a redox indicator of enzyme activity widely used in whole organism screening. A panel of 7 known schistosome active compounds including praziquantel, produced diverse effects on larval morphology within 3 days of culture although only two induced marked larval death within 7 days. The AB assay was very effective in detecting these lethal compounds but proved more inconsistent in detecting compounds which damaged but did not kill. The utility of the AB assay in detecting compounds which cause severe morbidity and/or death of schistosomula was confirmed in testing a panel of compounds previously selected in library screening as having activity against the adult worms. Furthermore, in prospective library screening, the AB assay was able to detect all compounds which induced killing and also the majority of compounds designated as hits based on morphological changes.

Conclusion

We conclude that an HTS combining AB readout and image-based analysis would provide an efficient and stringent primary assay for schistosome drug discovery.  相似文献   

12.
Fragment-based activity space: smaller is better   总被引:2,自引:0,他引:2  
Fragment-based drug discovery has the potential to supersede traditional high throughput screening based drug discovery for molecular targets amenable to structure determination. This is because the chemical diversity coverage is better accomplished by a fragment collection of reasonable size than by larger HTS collections. Furthermore, fragments have the potential to be efficient target binders with higher probability than more elaborated drug-like compounds. The selection of the fragment screening technique is driven by sensitivity and throughput considerations, and we advocate in the present article the use of high concentration bioassays in conjunction with NMR-based hit confirmation. Subsequent ligand X-ray structure determination of the fragment ligand in complex with the target protein by co-crystallisation or crystal soaking can focus on confirmed binders.  相似文献   

13.
The explosion of genuine high throughput technologies has allowed large compound libraries to be screened with ever-increasing biological specificity, exacerbating the problem of lead candidate selection for subsequent drug development. To avoid creating a bottleneck, compounds identified from the high throughput screens undergo lead optimisation by employing medium-throughput screen which permits ranking in terms of their basic absorption, distribution, metabolism, excretion (ADME) and toxicological properties. The historical role of the CRO in the drug discovery/development continuum has been to perform efficacy and toxicology studies, simply to support the regulatory submission of lead candidates. This situation is, however, changing with the development of preclinical lead optimisation technologies facilitating the selection of leading candidates, thereby bridging the gap between high throughput efficacy screens and conventional safety assessment programmes.  相似文献   

14.
The rapid identification of known or undesirable compounds from natural products extracts — “dereplication” — is an important step in an efficiently run natural products discovery program. Dereplication strategies use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. In the past few years, advances in technology have allowed the development of tandem analytical techniques such as liquid chromatography mass spectrometry (LC-MS), LC-MS-MS, liquid chromatography nuclear magnetic resonance (LC-NMR), and LC-NMR-MS. LC-NMR, despite its lower sensitivity as compared to LC-MS, provides a powerful tool for rapid identification of known compounds and identification of structure classes of novel compounds. LC-NMR is especially useful in instances where the data from LC-MS are incomplete or do not allow confident identification of the active component of a sample. LC-NMR has been used to identify the marine alkaloid aaptamine as the active component in an extract of the sponge Aaptos sp. This extract had been identified as an enzyme inhibitor by a high throughput screening (HTS) effort. Isolated aaptamine exhibited an IC50=120 μM against this enzyme. Strategies for the identification of aaptamine and for the use of LC-NMR in a natural products HTS program are discussed. Journal of Industrial Microbiology & Biotechnology (2000) 25, 342–345. Received 30 March 2000/ Accepted in revised form 03 July 2000  相似文献   

15.
High-throughput assays for promiscuous inhibitors   总被引:1,自引:0,他引:1  
High-throughput screening (HTS) searches large libraries of chemical compounds for those that can modulate the activity of a particular biological target; it is the dominant technique used in early-stage drug discovery. A key problem in HTS is the prevalence of nonspecific or 'promiscuous' inhibitors. These molecules have peculiar properties, act on unrelated targets and can dominate the results from screening campaigns. Several explanations have been proposed to account for promiscuous inhibitors, including chemical reactivity, interference in assay read-out, high molecular flexibility and hydrophobicity. The diversity of these models reflects the apparently unrelated molecules whose behaviors they seek to explain. However, a single mechanism may explain the effects of many promiscuous inhibitors: some organic molecules form large colloid-like aggregates that sequester and thereby inhibit enzymes. Hits from HTS, leads for drug discovery and even several drugs appear to act through this mechanism at micromolar concentrations. Here, we report two rapid assays for detecting promiscuous aggregates that we tested against 1,030 'drug-like' molecules. The results from these assays were used to test two preliminary computational models of this phenomenon and as benchmarks to develop new models.  相似文献   

16.
Biodiversity provides critical support for drug discovery. A significant proportion of drugs are derived, directly or indirectly, from biological sources. Through high throughput screening (HTS) and bioassay-guided isolation, bioactive compound sclerotiorin has been isolated from an endophytic fungus Cephalotheca faveolata. Sclerotiorin was found to be potent anti-proliferative against different cancer cells. In this study sclerotiorin has been found to induce apoptosis in colon cancer (HCT-116) cells through the activation of BAX, and down-regulation of BCL-2, those further activated cleaved caspase-3 causing apoptosis of cancer cells.  相似文献   

17.
MOTIVATION: Although natural products represent a reservoir of molecular diversity, the process of isolating and identifying active compounds is a bottleneck in drug discovery programs. The rapid isolation and identification of the bioactive component(s) of natural product mixtures during the bioassay-guided fractionation have become crucial factors in the competition with chemical compound libraries and combinatorial synthetic efforts. In this respect, the use of spectral databases in identification processes is indispensable. RESULTS: We have developed a database containing (13)C spectral information of over 6000 natural compounds, which allows for fast identifications of known compounds present in the crude extracts and provides insight into the structural elucidation of unknown compounds. AVAILABILITY: http://c13.usal.es  相似文献   

18.
With the exponential rise in the number of viable novel drug targets, computational methods are being increasingly applied to accelerate the drug discovery process. Virtual High Throughput Screening (vHTS) is one such established methodology to identify drug candidates from large collection of compound libraries. Although it complements the expensive and time consuming High Throughput Screening (HTS) of compound libraries, vHTS possess inherent challenges. The successful vHTS requires the careful implementation of each phase of computational screening experiment right from target preparation to hit identification and lead optimization. This article discusses some of the important considerations that are imperative for designing a successful vHTS experiment.  相似文献   

19.
High-throughput screening (HTS) of large compound libraries has become a commonly used method for the identification of drug leads, and nonphysiological reducing agents have been widely used for HTS. However, a comparison of the difference in the HTS results based on the choice of reducing agent used and potency comparisons of selected inhibitors has not been done with the physiological reducing agent reduced glutathione (GSH). Here, we compared the effects of three reducing agents-dithiothreitol (DTT), β-mercaptoethanol (β-MCE), and tris(2-carboxyethyl)phosphine (TCEP)-as well as GSH against three drug target proteins. Approximately 100,000 compounds were computationally screened for each target protein, and experimental testing of high-scoring compounds (~560 compounds) with the four reducing agents surprisingly produced many nonoverlapping hits. More importantly, we found that various reducing agents altered inhibitor potency (IC(50)) from approximately 10 μM with one reducing agent to complete loss (IC(50)>200 μM) of inhibitory activity with another reducing agent. Therefore, the choice of reducing agent in an HTS is critical because this may lead to the pursuit of falsely identified active compounds or failure to identify the true active compounds. We demonstrate the feasibility of using GSH for in vitro HTS assays with these three target enzymes.  相似文献   

20.
Laskar DB  Zeng L  Xu R  Kassel DB 《Chirality》2008,20(8):885-895
Enantiomeric excess (ee) was evaluated for two internally synthesized compound libraries using a high-throughput automated, intelligent four-channel parallel supercritical fluid chromatography/mass spectrometry system equipped with a multiplexed ion source interface (SFC/MS-MUX). The two libraries contained compounds spanning a wide range of enantiomeric ratios with structurally diverse chemical scaffolds and stereogenic centers. The system analyzed each sample simultaneously against four chiral columns using up to six organic modifiers. Enhancements to our previously published parallel supercritical fluid chromatography/mass spectrometry system were implemented to address the challenges associated with automated trace enantiomer identification and quantitation. A reversal of enantiomer elution order was observed for several samples across multiple CSPs and modifiers. The relationship between elution order and % ee accuracy is presented for compounds exhibiting high, middle and low % ee values. Despite incidences in which the minor enantiomer eluted prior to the major enantiomer with less than baseline resolution, the overall % ee was in agreement with separations in which full baseline resolution was achieved. The methods presented here demonstrate the value and utility of high-throughput ee determinations to support drug discovery and development programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号