首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined herpes simplex virus (HSV)-infected human HEp-2 cells or porcine cells that express herpes virus entry mediator (HVEM) for virus and receptor protein interactions. Antibody to HVEM, or its viral ligand gD, coimmunoprecipitated several similar proteins. A prominent 110-kDa protein that coprecipitated was identified as gH. The HVEM/gD/gH complex was detected with mild or stringent cell lysis conditions. It did not form in cells infected with HSV-1(KOS)Rid1 virus or with null virus lacking gD, gH, or gL. Thus, in cells a complex forms through physical associations of HVEM, gD, and at least gH.  相似文献   

2.
To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections.  相似文献   

3.
The measurement of intracellular calcium response transients in living mammalian cells is a popular functional assay for identification of agonists and antagonists to receptors or channels of pharmacological interest. In recent years, advances in fluorescence-based detection techniques and automation technologies have facilitated the adaptation of this assay to 384-well microplate format high-throughput screening (HTS) assays. However, the cost and time required performing the intracellular calcium HTS assays in the 384-well format can be prohibitive for HTS campaigns of greater than 1 x 10(6) wells. For these reasons, it is attractive to miniaturize intracellular calcium functional assays to the 1536-well microplate format, where assay volumes and plate throughput can be decreased by several fold. The focus of the research described in this article is the miniaturization of an intracellular calcium assay to 1536-well plate format. This was accomplished by modifying the hardware and software of a fluorometric imaging plate reader (FLIPR) to enable transfer of nanoliters of test compound directly to a 1536-well assay plate, and measure the resulting calcium response from all 1536 wells simultaneously. An intracellular calcium functional assay against the rat muscarinic acetylcholine receptor subtype 1 (rmAchR1) G-protein coupled receptor (GPCR) was miniaturized and executed on this modified instrument. In experiments measuring the activity of known muscarinic receptor agonists and antagonists, the miniaturized FLIPR assay gave EC(50) and IC(50) values and rank order potency comparable to the 384-well format assays. Calculated Z' factors for the miniaturized agonist and antagonist assays were, respectively, 0.56 +/- 0.21 and 0.53 +/- 0.22, which were slightly higher (Z'(agonist) = 0.55 +/- 0.33) and lower (Z'(antagonist) = 0.70 +/- 0.18) than the corresponding values in the 384-well assays. A mock agonist HTS campaign against the muscarinic receptor in miniaturized format was able to identify all wells spiked with the rmAchR1 agonist carbachol.  相似文献   

4.
The adaptor protein CIN85 is widely distributed in different tissues and has three Src homology 3 (SH3) domains, a proline-rich region (PRR), and a coiled-coil domain. During studies on the function of CIN85, it was reported to form a complex with herpes simplex virus 1 (HSV-1) infected cell protein 0 (ICP0), which plays a key role in enabling viral replication. Here, we demonstrate that plaque formation by HSV-1 is reduced on HeLa cells expressing CIN85 ectopically. The PRR of CIN85 was found to be essential for the inhibition of virus growth, whereas the three SH3 domains were not required. CIN85 also suppressed HSV-1 growth in Chinese hamster ovary (CHO) cells expressing the receptor for herpes simplex virus entry (herpes virus entry mediator A; HVEM). However, immunoprecipitation experiments showed that CIN85 did not interact with HVEM directly, indicating that CIN85 is not involved in the HSV-1 cell-entry pathway, but rather in another downstream pathway. Collectively, our data indicate that CIN85 might play an important role in HSV-1 infection.  相似文献   

5.
High-throughput screening in the 1536-well format has been largely restricted to solution-based and cell-based screens. In this article, we show the feasibility of a completely automated, robust scintillation proximity assay in the 1536-well format that is suitable to identify inhibitors for a serine/threonine kinase from a compound library. The introduction of [(33)P]phosphate into a biotinylated peptide substrate mirrors the activity of the kinase. The peptide is immobilized on streptavidin-coated LEADseeker imaging beads and [(33)P]phosphate incorporation is detected with the LEADseeker imaging system of Amersham Pharmacia Biotech. To improve the liquid handling procedures for imaging bead suspensions in the low microliter range, we developed a novel trough with an integrated stirring function. A comparison of the 1536-well assay to a 384-well assay revealed a comparable assay quality with Z' factors of about 0.7 for the 384-well format and 0.6 for the 1536-well format. In an automated screen of a random compound collection, 94.4% of the inhibitory compounds could be identified with both assay formats. Dose-response curves were performed for a selection of identified kinase inhibitors and revealed similar IC(50) values for both assay formats.  相似文献   

6.
Fluorescence polarization (FP) is an established technique for the study of biological interactions and is frequently used in the high-throughput screening (HTS) of potential new drug targets. This work describes the miniaturization of FP receptor assays to 1536-well formats for use in HTS. The FP assays were initially developed in 384-well microplates using CyDye-labeled nonpeptide and peptide ligands. Receptor expression levels varied from approximately 1 to 10 pmols receptor per mg protein, and ligand concentrations were in the 0.5- to 1.0-nM range. The FP assays were successfully miniaturized to 1536-well formats using Cy3B-labeled ligands, significantly reducing reagent consumption, particularly the receptor source, without compromising assay reliability. Z' factor values determined for the FP receptor assays in both 384- and 1536-well formats were found to be > 0.5, indicating the assays to be robust, reliable, and suitable for HTS purposes.  相似文献   

7.
The human eye is an important target for infection with herpes simplex virus 1 (HSV-1). Damage to cells forming the trabeculum of the eye by HSV-1 infection could contribute to the development of glaucoma, a major blinding disease. Primary cultures of human trabecular meshwork cells were used as an in vitro model to demonstrate the ability of HSV-1 to enter into and establish a productive infection of the trabeculum. Blocking of entry by anti-herpesvirus entry mediator (HVEM) antibody implicated HVEM as the major receptor for HSV-1 infection.  相似文献   

8.
Glycoprotein B (gB) is one of the essential components for infection by herpes simplex virus-1 (HSV-1). Although several cellular receptors that associate with glycoprotein D (gD), such as herpes virus entry mediator (HVEM) and Nectin-1, have been identified, specific molecules that mediate HSV-1 infection by associating with gB have not been elucidated. Here, we found that paired immunoglobulin-like type 2 receptor (PILR) alpha associates with gB, and cells transduced with PILRalpha become susceptible to HSV-1 infection. Furthermore, HSV-1 infection of human primary cells expressing both HVEM and PILRalpha was blocked by either anti-PILRalpha or anti-HVEM antibody. Our results demonstrate that cellular receptors for both gB and gD are required for HSV-1 infection and that PILRalpha plays an important role in HSV-1 infection as a coreceptor that associates with gB. These findings uncover a crucial aspect of the mechanism underlying HSV-1 infection.  相似文献   

9.
The UV-inactivated herpes simplex virus 1 (HSV-1) and glycoprotein D (gD) of HSV-1 have been shown to activate nuclear factor kappaB (NF-kappaB) in U937 cells, but mechanisms involved in this activation have not been elucidated. Here we report that: (i) UV-inactivated HSV-1 induced an increased NF-kappaB activation in cells expressing human HVEM (for herpesvirus entry mediator) at surface level, naturally or following stable transfection, but not in cells in which this receptor was not detected by flow cytometry analysis, (ii) treatment with soluble gD induced a dose-dependent NF-kappaB activation in THP-1 cells naturally expressing HVEM, and a monoclonal antibody that prevents binding of gD to HVEM significantly reduced NF-kappaB activation by soluble gD in the same cells, (iii) coculture with transfectants expressing wild-type gD on their surface induced an approximately twofold increase in NF-kappaB activation in cells naturally expressing HVEM, while coculture with transfectants expressing a mutated form of gD, lacking its capability to bind HVEM, did not induce a similar effect and (iv) treatment with soluble gD induced a dose-dependent NF-kappaB activation in CHO transfectants expressing HVEM, but not in control CHO transfectants lacking any functional gD receptor. Overall, these results establish that HVEM is involved in NF-kappaB activation by HSV-1 gD.  相似文献   

10.
The miniaturization of gene transfer assays to either 384- or 1536-well plates greatly economizes the expense and allows much higher throughput when transfecting immortalized and primary cells compared with more conventional 96-well assays. To validate the approach, luciferase and green fluorescent protein (GFP) reporter gene transfer assays were developed to determine the influence of cell seeding number, transfection reagent to DNA ratios, transfection time, DNA dose, and luciferin dose on linearity and sensitivity. HepG2, CHO, and NIH 3T3 cells were transfected with polyethylenimine (PEI)–DNA in both 384- and 1536-well plates. The results established optimal transfection parameters in 384-well plates in a total assay volume of 35 μl and in 1536-well plates in a total assay volume of 8 μl. A luciferase assay performed in 384-well plates produced a Z′ score of 0.53, making it acceptable for high-throughput screening. Primary hepatocytes were harvested from mouse liver and transfected with PEI DNA and calcium phosphate DNA nanoparticles in 384-well plates. Optimal transfection of primary hepatocytes was achieved on as few as 250 cells per well in 384-well plates, with CaPO4 proving to be 10-fold more potent than PEI.  相似文献   

11.
Herpes virus entry mediator (HVEM) is one of two principal receptors mediating herpes simplex virus (HSV) entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333) that expressed wild-type gD (HSV-2/gD) or mutant gD able to bind to nectin-1 (the other principal entry receptor) but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333). After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+) T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+) T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.  相似文献   

12.
13.
p56(lck) is a lymphocyte-specific tyrosine kinase that plays an important role in both T-cell maturation and activation. We have developed a homogeneous assay in which p56(lck) catalyzes the transfer of the gamma-phosphate group from [gamma-(33)P]ATP to a biotinylated peptide substrate. The labeled peptide is then captured on a streptavidin-coated scintillation proximity assay (SPA) bead or imaging proximity bead. The SPA is counted in a microplate scintillation counter and the imaging proximity assay is counted in a charge-coupled device-based imaging system called LEADseekertrade mark, recently launched as a homogeneous imaging system by Amersham Pharmacia Biotech. We show, via time-dependence assays and inhibitor studies, that this assay can be performed in 1536-well microplate format using imaging proximity as the method of detection. The results compare favorably with the same assay performed in 384-well microplate format using both SPA and imaging proximity as the detection methods. From this study, we conclude that a kinase assay can be performed in 384- and 1536-well format using imaging as the detection method, with significant time savings over standard scintillation counting. In addition, we show cost saving advantages of 1536- over 384-well format in terms of reagent usage, higher throughput, and waste disposal.  相似文献   

14.
Yoon M  Zago A  Shukla D  Spear PG 《Journal of virology》2003,77(17):9221-9231
Multiple cell surface molecules (herpesvirus entry mediator [HVEM], nectin-1, nectin-2, and 3-O-sulfated heparan sulfate) can serve as entry receptors for herpes simplex virus type 1 (HSV-1) or HSV-2 and also as receptors for virus-induced cell fusion. Viral glycoprotein D (gD) is the ligand for these receptors. A previous study showed that HVEM makes contact with HSV-1 gD at regions within amino acids 7 to 15 and 24 to 32 at the N terminus of gD. In the present study, amino acid substitutions and deletions were introduced into the N termini of HSV-1 and HSV-2 gDs to determine the effects on interactions with all of the known human and mouse entry/fusion receptors, including mouse HVEM, for which data on HSV entry or cell fusion were not previously reported. A cell fusion assay was used to assess functional activity of the gD mutants with each entry/fusion receptor. Soluble gD:Fc hybrids carrying each mutation were tested for the ability to bind to cells expressing the entry/fusion receptors. We found that deletions overlapping either or both of the HVEM contact regions, in either HSV-1 or HSV-2 gD, severely reduced cell fusion and binding activity with all of the human and mouse receptors except nectin-1. Amino acid substitutions described previously for HSV-1 (L25P, Q27P, and Q27R) were individually introduced into HSV-2 gD and, for both serotypes, were found to be without effect on cell fusion and the binding activity for nectin-1. Each of these three substitutions in HSV-1 gD enhanced fusion with cells expressing human nectin-2 (ordinarily low for wild-type HSV-1 gD), but the same substitutions in HSV-2 gD were without effect on the already high level of cell fusion observed with the wild-type protein. The Q27P or Q27R substitution in either HSV-1 and HSV-2 gD, but not the L25P substitution, significantly reduced cell fusion and binding activity for both human and mouse HVEM. Each of the three substitutions in HSV-1 gD, as well as the deletions mentioned above, reduced fusion with cells bearing 3-O-sulfated heparan sulfate. Thus, the N terminus of HSV-1 or HSV-2 gD is not necessary for functional interactions with nectin-1 but is necessary for all of the other receptors tested here. The sequence of the N terminus determines whether nectin-2 or 3-O-sulfated heparan sulfate, as well as HVEM, can serve as entry/fusion receptors.  相似文献   

15.
95-19 and US11cl19.3 are BHK(TK)-derived cell lines that are highly resistant to postattachment entry of herpes simplex virus type 1 (HSV-1) and HSV-2 but not to later steps in single-step replication. The resistance properties of these two cell types are not identical. US11cl19.3 cells are fully susceptible to pseudorabies virus (PRV), as shown by single-step growth experiments, whereas 95-19 cells are resistant to entry of free PRV but not to entry by cell-cell spread. We have tested the ability of HVEM to overcome the block to infection in both cell lines following transient and stable transfection. HVEM was able to mediate entry of free HSV-1 into both cell lines, as shown by an increase in the number of β-galactosidase-expressing cells in cultures transiently transfected with an HVEM expression plasmid and infected with lacZ-expressing HSV-1. In stably transfected 95-19 cells, HVEM enhanced infection by free HSV-1, as shown by an increase in the number of infectious centers obtained following infection. In both cell types, HVEM strongly enhanced entry of HSV-1 and HSV-2 by cell-cell spread, suggesting that HVEM can function as an entry mediator both in entry of free virus and in entry by cell-cell spread.  相似文献   

16.
Either herpesvirus entry mediator (HVEM, TNFRSF14) or nectin-1 (PVRL1) is sufficient for herpes simplex virus (HSV) infection of cultured cells. The contribution of individual receptors to infection in vivo and to disease is less clear. To assess this, Tnfrsf14(-/-) and/or Pvrl1(-/-) mice were challenged intravaginally with HSV-2. Infection of the vaginal epithelium occurred in the absence of either HVEM or nectin-1 but was virtually undetectable when both receptors were absent, indicating that either HVEM or nectin-1 was necessary. Absence of nectin-1 (but not HVEM) reduced efficiency of infection of the vaginal epithelium and viral spread to the nervous system, attenuating neurological disease and preventing external lesion development. While nectin-1 proved not to be essential for infection of the nervous system, it is required for the full manifestations of disease. This study illustrates the value of mutant mice for understanding receptor contributions to disease caused by a human virus.  相似文献   

17.
DNA helicases are responsible for the unwinding of double-stranded DNA, facilitated by the binding and hydrolysis of 5'-nucleoside triphosphates. These enzymes represent an important class of targets for the development of novel anti-infective agents particularly because opportunity exists for synergy with existing therapies targeted at other enzymes involved in DNA replication. Unwinding reactions are conventionally monitored by low throughput, gel-based radiochemical assays; to overcome the limitations of low throughput to achieve comprehensive characterization of adenosine triphosphate (ATP)-dependent unwinding by viral and bacterial helicases and the screening for unwinding inhibitors, we have developed and validated homogeneous time-resolved fluorescence energy transfer (TRET) assays. Rapid characterization and screening of DNA helicase has been performed in 96- and 384-well plate densities, and the ability to assay in 1536-well format also demonstrated. We have successfully validated and are running full high throughput runs using 384-well TRET helicase assays, culminating in the identification of a range of chemically diverse inhibitors of viral and bacterial helicases. For screening in mixtures, we used a combination of quench correction routines and confirmatory scintillation proximity (SP) assays to eliminate false-positives due to the relatively high levels of compound quenching (unlike other Ln(3+)-based assays). This strategy was successful yet emphasised the need for further improvements in helicase assays.  相似文献   

18.
19.
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.  相似文献   

20.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号