首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can be pretreated with 1 mM Ca before reconstitution without affecting the subsequent exocytosis of the reconstituted system in response to micromolar calcium concentrations. On reconstitution, aggregated cortical granules will fuse with one another in response to micromolar calcium provided that one of their number is in contact with the plasma membrane. If exocytosis involves the generation of lipid fusogens, then these results suggest that the calcium-stimulated production of a fusogen can occur only when contiguity exists between cortical granules and plasma membrane. They also suggest that a substance involved in exocytosis can diffuse and cause piggy-back fusion of secretory granules that are in contact with the plasma membrane. Our results are also consistent with a scheme in which calcium ions cause a reversible, allosteric activation of an exocytotic protein.  相似文献   

2.
M Whitaker 《FEBS letters》1985,189(1):137-140
[3H]inositol-labelled products are released from adrenal medullary cells during exocytotic secretion. In 'leaky' cells in which small molecules readily enter and leave the cytoplasm, addition of micromolar calcium ions in the presence of ATP stimulates exocytosis and causes the release of inositol polyphosphates. These data support the idea that hydrolysis of plasma membrane polyphosphoinositides may be an essential step in exocytotic secretion.  相似文献   

3.
Acrosomal exocytosis involves a massive fusion between the outer acrosomal and the plasma membranes of the spermatozoon triggered by stimuli that open calcium channels at the plasma membrane. Diacylglycerol has been implicated in the activation of these calcium channels. Here we report that this lipid promotes the efflux of intraacrosomal calcium and triggers exocytosis in permeabilized human sperm, implying that diacylglycerol activates events downstream of the opening of plasma membrane channels. Furthermore, we show that calcium and diacylglycerol converge in a signaling pathway leading to the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of diacylglycerol promotes the PKC-dependent activation of PLD1. Rescue experiments adding phosphatidic acid or PIP(2) and direct measurement of lipid production suggest that both PKC and PLD1 promote PIP(2) synthesis. Inhibition of different steps of the pathway was reverted by adenophostin, an agonist of IP(3)-sensitive calcium channels, indicating that PIP(2) is necessary to keep these channels opened. However, phosphatidic acid, PIP(2), or adenophostin could not trigger exocytosis by themselves, indicating that diacylglycerol must also activate another factor. We found that diacylglycerol and phorbol ester stimulate the accumulation of the GTP-bound form of Rab3A. Together our results indicate that diacylglycerol promotes acrosomal exocytosis by i) maintaining high levels of IP(3) - an effect that depends on a positive feedback loop leading to the production of PIP(2) - and ii) stimulating the activation of Rab3A, which in turn initiates a cascade of protein interactions leading to the assembly of SNARE complexes and membrane fusion.  相似文献   

4.
Exocytosis, the fusion of secretory vesicles with the plasma membrane to allow release of the contents of the vesicles into the extracellular environment, and endocytosis, the internalization of these vesicles to allow another round of secretion, are coupled. It is, however, uncertain whether exocytosis and endocytosis are tightly coupled, such that secretory vesicles fuse only transiently with the plasma membrane before being internalized (the 'kiss-and-run' mechanism), or whether endocytosis occurs by an independent process following complete incorporation of the secretory vesicle into the plasma membrane. Here we investigate the fate of single secretory vesicles after fusion with the plasma membrane by measuring capacitance changes and transmitter release in rat chromaffin cells using the cell-attached patch-amperometry technique. We show that raised concentrations of extracellular calcium ions shift the preferred mode of exocytosis to the kiss-and-run mechanism in a calcium-concentration-dependent manner. We propose that, during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.  相似文献   

5.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

6.
The conversion of surface-adsorbed deoxyribonucleic acid (DNA) molecules to a state in which they are inaccessible to exogenous deoxyribonuclease requires specifically calcium ions; magnesium ions cannot replace calcium ions. Virtually maximal levels of nuclease-resistant DNA binding and genetic transformation can be obtained in media free from magnesium and containing only calcium ions. It is suggested that the calcium-requiring process is the transport of DNA molecules across the plasma membrane. Magnesium ions stimulate both the loss of surface-adsorbed DNA to the medium and the extracellular degradation of DNA.  相似文献   

7.
The role of calcium in exocytosis and endocytosis in plant cells   总被引:6,自引:0,他引:6  
The role of calcium in the individual cellular events leading to exocytosis is considered. Both vesicle movement processes and vesicle fusion at the cell surface require calcium for completion of specific events in this pathway. Our knowledge of these events is incomplete. In particular the movement of secretory vesicles by the cytoskeleton in response to added calcium is a key event that is beyond our comprehension at present. At the whole cell level, it is shown that external calcium, at the appropriate concentration, is required to elicit secretion at optimal rates. In both plant and animal cells secretion appears to be dependent on, or is triggered by, a rise in the level of internal free calcium ions from about 10-7 to 10-6M or even higher. In these eukaryotes internal organelles take up calcium and maintain a low level of calcium in the cell, offsetting the inflow of calcium from the plasma membrane. In some systems the inflow is restricted to a certain part of the plasma membrane, which then acts as a focus for exocytosis and, thereby, establishes a cellular polarity. In plant tissues there appears to be a requirement for some circulation of calcium within the apoplast, to sustain secretion. Recent papers on endocytosis have confirmed its occurrence in plant cells and made significant advances in isolating and characterising the clathrin coats of the coated vesicles involved in the uptake. There is no evidence, at present, for a direct role for calcium in these events. Indirectly, calcium stimulates exocytosis, and hence the delivery of excess membrane to the cell surface, which may be retrieved by an increase in the rate of endocytosis. Quantitative comparisons of the membrane flow occurring in these pathways are not available. Several plant cellular systems have been employed to study secretion and some of these may prove to be superior model systems for the investigation of certain aspects of the control of exocytosis and endocytosis by calcium ions.  相似文献   

8.
D I Mundy  W J Strittmatter 《Cell》1985,40(3):645-656
Exocytosis is initiated by the receptor-mediated influx of calcium that results in fusion of the secretory vesicle with the plasma membrane. We examined the possibility that calcium-dependent exocytosis in mast cells and adrenal chromaffin cells requires metalloendoprotease activity. Metalloendoprotease inhibitors and dipeptide substrates block exocytosis in these cells with the same specificity and dose dependency as that with which they interact with metalloendoproteases. Metalloendoprotease activity is identified in these cells with fluorogenic synthetic substrates, which also blocked exocytosis. Metalloendoprotease activity is highest in the plasma membrane of chromaffin cells. The metalloendoprotease appears to be required in exocytosis at a step dependent on or after calcium entry, since exocytosis initiated by direct calcium introduction in both mast cells and chromaffin cells is blocked by metalloendoprotease inhibitors.  相似文献   

9.
Kato N  Nakanishi M  Hirashima N 《Biochemistry》2002,41(25):8068-8074
To investigate the role of the asymmetric distribution of phospholipids of the plasma membrane in exocytosis, we examined the effects of disruption of this asymmetrical distribution of lipids on exocytotic release from mast cells (RBL-2H3). Lipid scramblase, which is activated by divalent cations and catalyzes the transbilayer movement of phospholipids, was overexpressed in mast cells. Exogenous lipid scramblase was expressed in the plasma membrane and the cytoplasm. Activation of scramblase by divalent cations disrupted the asymmetrical distribution of phospholipids in the plasma membrane. Exocytotic release induced by calcium ionophore and phorbol ester was significantly inhibited in the cells transfected with wild-type scramblase. This inhibition was observed with time lag of about 5 min. Furthermore, when the asymmetric distribution of lipids was disrupted before induction of exocytosis, the inhibition of exocytotic release was obvious from the beginning without time lag. These results suggest that the asymmetric distribution of phospholipids in the plasma membrane plays an essential role in fusion between secretory granules and the plasma membrane. This finding also demonstrates that the transbilayer asymmetry of phospholipids regulates exocytosis and gives a new insight into the significance of lipid asymmetry in the plasma membrane.  相似文献   

10.
We study exocytosis in the planar isolated cortex of the egg of the sea urchin Lytechinus pictus. Solutions bathing the exocytotic apparatus need not contain appreciable amounts of ions: fusion follows addition of submicromolar calcium to solutions containing only nonelectrolyte. We examine the effects of altering the granule membrane permeability to small molecules with ionophores and digitonin. Introducing holes in the secretory granule membrane to the extent of allowing free passage of small molecules does not cause secretion in vitro. We add the amphipathic compound digitonin at 12 to 15 microM concentrations and demonstrate that the granule membrane can become permeable to lucifer yellow, yet that granules remain intact. Granules still undergo exocytosis after digitonin treatment at such concentrations upon subsequent addition of calcium. Higher concentrations of digitonin lead to granule content swelling and vesicle bursting. We conclude that cortical granule hydration during exocytosis is not mediated by small ionic channels.  相似文献   

11.
Egg cortical granules remain attached to the egg plasma membrane when the egg is ruptured. We present evidence that demonstrates that, when the cytoplasmic face of the egg plasma membrane is exposed to micromolar calcium concentrations, an exocytosis of the cortical granules occurs which corresponds to the cortical granule exocytosis seen when the egg is fertilized. The calcium sensitivity of the preparation is decreased by an increase in magnesium concentration and increased by a decrease in magnesium concentration. Exocytosis is inhibited by trifluoperazine (half inhibition at 6 microM), a drug that inhibits the action of the calcium-dependent regulatory protein calmodulin. Colchicine, vinblastine, nocodazole, cytochalasin B, phalloidin, N-ethylmaleimide-modified myosin subfragment 1, and antibody to actin are without effect on this in vitro exocytosis at concentrations that far exceed those required to disrupt microtubules and microfilaments. Conditions are such that penetration to the exocytotic site is optimal. It is unlikely, therefore, that either actin or tubulin participate intimately in exocytosis. Our data also exclude on quantitative grounds several other mechanisms postulated to account for the fusion of the secretory granule with the plasma membrane.  相似文献   

12.
Regulated exocytosis involves calcium-dependent fusion of secretory vesicles with the plasma membrane with three SNARE proteins playing a central role: the vesicular synaptobrevin and the plasma membrane syntaxin1 and SNAP-25. Cultured bovine chromaffin cells possess defined plasma membrane microdomains that are specifically enriched in both syntaxin1 and SNAP-25. We now show that in both isolated cells and adrenal medulla slices these target SNARE (t-SNARE) patches quantitatively coincide with single vesicle secretory spots as detected by exposure of the intravesicular dopamine beta-hydroxylase onto the plasmalemma. During exocytosis, neither area nor density of the syntaxin1/SNAP-25 microdomains changes on the plasma membrane of both preparations confirming that preexisting clusters act as the sites for vesicle fusion. Our analysis reveals a high level of colocalization of L, N and P/Q type calcium channel clusters with SNAREs in adrenal slices; this close association is altered in individual cultured cells. Therefore, microdomains carrying syntaxin1/SNAP-25 and different types of calcium channels act as the sites for physiological granule fusion in "in situ" chromaffin cells. In the case of isolated cells, it is the t-SNAREs microdomains rather than calcium channels that define the sites of exocytosis.  相似文献   

13.
The binding of alpha-SNAP to the membrane proteins syntaxin, SNAP-25, and synaptobrevin leads to the recruitment of the N-ethylmaleimide-sensitive fusion protein (NSF). ATP hydrolysis by NSF has been suggested to drive conformational changes in one or more of these membrane proteins that are essential for regulated exocytosis. Functional evidence for a role of alpha-SNAP in exocytosis in adrenal chromaffin cells comes from the ability of this protein to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized cells. Here we examine the effect of a series of deletion mutants of alpha-SNAP on exocytosis, and on the ability of alpha-SNAP to interact with NSF, to define essential domains involved in protein-protein interactions in exocytosis. Deletion of extreme N- or C-terminal regions of alpha-SNAP produced proteins unable to bind to syntaxin or to stimulate exocytosis, suggesting that these domains participate in essential interactions. Deletion of C-terminal residues abolished the ability of alpha-SNAP to bind NSF. In contrast, deletion of up to 120 N-terminal residues did not prevent the binding of NSF to immobilized alpha-SNAP and such mutants were also able to stimulate the ATPase activity of NSF. These results suggest that the C-terminus, but not the N-terminus, of alpha-SNAP is crucial for interactions with NSF. The involvement of the C-terminus of alpha-SNAP, which contains a predicted coiled-coil domain, in the binding of both syntaxin and NSF would place the latter two proteins in proximity in a ternary complex whereupon the energy derived from ATP hydrolysis by NSF could induce a conformational change in syntaxin required for exocytosis to proceed.  相似文献   

14.
生物膜的磷脂双分子层将细胞与外界环境分开。大部分细胞会在机械损伤或化学应激下引发质膜损伤,如果不及时修复将会导致细胞死亡。胞外钙离子通过伤口进入细胞,作为损伤的最初信号,会诱发一系列的修复反应。随后,胞内细胞器也释放钙离子,并产生系列细胞行为来应对损伤,维护质膜的完整性。本文介绍了在损伤修复过程的胞吞作用、胞吐作用、胞外小泡脱落等细胞行为。综述了补丁模型、修复帽模型和大损伤修复的模型特点。补丁模型是最早的修复模型,提出后不断得到完善。细胞除了需要在损伤处聚集小泡、融合形成补丁外,还需通过胞吐、胞吞和出芽(小泡脱落)等方式参与伤口修复。本文简要介绍参与质膜修复的重要蛋白质如钙蛋白酶、dysferlin、MG53、膜联蛋白、突触结合蛋白(Syt-VⅡ)、ESCRTⅢ、酸性鞘磷脂酶、细胞骨架蛋白质等在修复过程中的作用。  相似文献   

15.
Cell function can be modulated by the insertion and removal of ion channels from the cell surface. The mechanism used to keep channels quiescent prior to delivery to the cell surface is not known. In eggs, cortical vesicle exocytosis inserts voltage-gated calcium channels into the cell surface. Calcium influx through these channels triggers compensatory endocytosis. Secretory vesicles contain high concentrations of calcium and hydrogen ions. We propose that lumenal hydrogen ions inhibit vesicular calcium channel gating prior to exocytosis, discharge of lumenal protons upon vesicle-plasma membrane fusion enables calcium channel gating. Consistent with this hypothesis we find that cortical vesicle lumens are acidic, and exocytosis releases lumenal hydrogen ions. Acidic extracellular pH reversibly blocks endocytosis, and the windows of opportunity for inhibition with a calcium-channel blocker or hydrogen ions are indistinguishable. Calcium ionophore treatment circumvents the low pH block, suggesting that calcium influx, or an upstream step, is obstructed. Inhibition of calcium influx by preventing membrane depolarization is unlikely, as elevation of the extracellular potassium concentration failed to overcome the pH block, and low extracellular pH was found to depolarize the membrane potential. We conclude that low pH inhibits endocytosis at a step between membrane depolarization and calcium influx .  相似文献   

16.
The “in vitro” interaction between bovine adrenal medullary plasma membranes and chromaffin granules has recently been proposed as a putative cell-free model for exocytosis because calcium ions specifically control the plasma membrane-induced release of 10?7 and 10?5 M. Addition of ruthenium red or pretreatment with neuraminidase gradually blocks this interaction indicating that sialic acid containing substrates may be of major importance. These observations and similar results obtained by other authors working on different systems suggest a role for sialic acid containing moieties in exocytosis.  相似文献   

17.
Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).  相似文献   

18.
Targeting and mistargeting of plasma membrane adaptors in vitro   总被引:15,自引:7,他引:8       下载免费PDF全文
《The Journal of cell biology》1993,123(5):1093-1105
Targeting and recruitment of the plasma membrane (PM) clathrin-coated vesicle adaptor complexes has been studied using an in vitro system based on permeabilized acceptor cells and donor cytosol. Through the use of species- and/or tissue-specific antibodies, only newly recruited exogenous PM adaptors are visualized. Targeting of PM adaptors can be switched from the plasma membrane to a perinuclear compartment by GTP gamma S or excess calcium. Prior treatment with brefeldin A prevents GTP gamma S-induced mistargeting. Double-labeling immunofluorescence and immunogold EM indicate that the perinuclear PM adaptor binding compartment is late endosomal. We propose that receptors for PM adaptors cycle between the plasma membrane and an endosomal storage compartment. Normally the receptors would be switched on only at the plasma membrane, but both GTP gamma S and calcium are capable of reversing this switch. Intracellular sequestration of PM adaptor receptors may provide the cell with a mechanism for up-regulating endocytosis following a burst of exocytosis.  相似文献   

19.
In vivo pulse labeling of suspension-cultured Arabidopsis cells with [32P]orthophosphate allows a systematic analysis of dynamic changes in protein phosphorylation. Here, we use this technique to investigate signal transduction events at the plant plasma membrane triggered upon perception of microbial elicitors of defense responses, using as a model elicitor flg22, a peptide corresponding to the most conserved domain of bacterial flagellin. We demonstrate that two-dimensional gel electrophoresis in conjunction with mass spectrometry is a suitable tool for the identification of intrinsic membrane proteins, and we show that among them a syntaxin, AtSyp122, is phosphorylated rapidly in response to flg22. Although incorporation of radioactive phosphate into the protein only occurs significantly after elicitation, immunoblot analysis after two-dimensional gel separation indicates that the protein is also phosphorylated prior to elicitation. These results indicate that flg22 elicits either an increase in the rate of turnover of phosphate or an additional de novo phosphorylation event. In vitro, phosphorylation of AtSyp122 is calcium-dependent. In vitro phosphorylated peptides separated by two-dimensional thin layer chromatography comigrate with two of the three in vivo phosphopeptides, indicating that this calcium-dependent phosphorylation is biologically relevant. These results indicate a regulatory link between elicitor-induced calcium fluxes and the rapid phosphorylation of a syntaxin. Because syntaxins are known to be important in membrane fusion and exocytosis, we hypothesize that one of the functions of the calcium signal is to stimulate exocytosis of defense-related proteins and compounds.  相似文献   

20.
Similar to its role in secretory cells, calcium triggers exocytosis in nonsecretory cells. This calcium-dependent exocytosis is essential for repair of membrane ruptures. Using total internal reflection fluorescence microscopy, we observed that many organelles implicated in this process, including ER, post-Golgi vesicles, late endosomes, early endosomes, and lysosomes, were within 100 nm of the plasma membrane (in the evanescent field). However, an increase in cytosolic calcium led to exocytosis of only the lysosomes. The lysosomes that fused were predominantly predocked at the plasma membrane, indicating that calcium is primarily responsible for fusion and not recruitment of lysosomes to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号