首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic maps were constructed for Leptospira interrogans serovars icterohaemorrhagiae and pomona. Previously we independently constructed physical maps of the genomes for these two serovars. The genomes of both serovars consist of a large replicon (4.4 to 4.6 Mb) and a small replicon (350 kb). Genes were localized on the physical maps by using Southern blot analysis with specific probes. Among the probes used were genes encoding a variety of essential enzymes and genes usually found near bacterial chromosomal replication origins. Most of the essential genes are on the larger replicon of each serovar. However, the smaller replicons of both serovars contain the asd gene. The asd gene encodes aspartate beta-semialdehyde dehydrogenase, an enzyme essential in amino acid and cell wall biosyntheses. The finding that both L. interrogans replicons contain essential genes suggests that both replicons are chromosomes. Comparison of the genetic maps of the larger replicons of the two serovars showed evidence of large rearrangements. These data show that there is considerable intraspecies heterogeneity in L. interrogans.  相似文献   

2.
Mobile elements Meanwhile, we know that mobile elements are present in all forms of life. The genomes of mammals consist of up to 50% of mobile elements, those of plants up to 90%. In bacteria mobile elements establish themselves as autonomously replicating replicons (plasmids and plasmid‐prophages) or are constituents of replicons such as IS elements, transposons, conjugative transposons, integrative and conjugative elements (ICEs), genomic islands and integrons. Why distinct bacterial species still exist? Most probably, still unknown mechanisms ensure that some genes never become mobile.  相似文献   

3.
Most bacterial genomes have one single chromosome. The species Burkholderia cenocepacia, a Gram-negative β-proteobacterium, is one of the exceptions. Genomes of four strains of the species have been sequenced and each has three circular chromosomes. In the genus Burkholderia, there are another seven sequenced strains that have three chromosomes. In this paper, the numbers of essential genes and tRNA genes among the 11 strains of the genus Burkholderia are compared. Interestingly, it is found that the shortest chromosome of B. cenocepacia AU-1054 has much (over three times) more essential genes and tRNA genes than the corresponding chromosomes in the other 10 strains. However, no significant difference has been found on the two longer chromosomes among the 11 strains. Non-homologous chromosomal translocation between chromosomes I and III in the species B. cenocepacia is found to be responsible for the unusual distribution of essential genes. The present work may contribute to the understanding of how the secondary chromosomes of multipartite bacterial genomes originate and evolve. The computer program, DEG_match, for comparatively identifying essential genes in any annotated bacterial genomes is freely available at http://cobi.uestc.edu.cn/resource/AU1054/.  相似文献   

4.
The symbiotic N2-fixing α-proteobacterium Sinorhizobium meliloti has three replicons: a circular chromosome (3.7 Mb) and two smaller replicons, pSymA (1.4 Mb) and pSymB (1.7 Mb). Sequence analysis has revealed that an essential gene is carried on pSymB, which brings into question whether pSymB should be considered a chromosome or a plasmid. Based on the criterion that essential genes define a chromosome, several species have been shown to have multiple chromosomes. Many of these species are part of the α subdivision of the Proteobacteria family. Here, additional justification is presented for designating the pSymB replicon as a chromosome. It is shown that chromosomes within a species share a more similar dinucleotide composition, or genome signature, than plasmids do with the host chromosome(s). Dinucleotide signatures were determined for each of the S. meliloti replicons, and, consistent with the suggestion that pSymB is a chromosome, it is shown that the pSymB signature more closely resembles that of the S. meliloti chromosome, while the pSymA signature is typical of other α-proteobacterial plasmids. Electronic Publication  相似文献   

5.
In bacterial genomes composed of more than one chromosome, one replicon is typically larger, harbors more essential genes than the others, and is considered primary. The greater variability of secondary chromosomes among related taxa has led to the theory that they serve as an accessory genome for specific niches or conditions. By this rationale, purifying selection should be weaker on genes on secondary chromosomes because of their reduced necessity or usage. To test this hypothesis we selected bacterial genomes composed of multiple chromosomes from two genera, Burkholderia and Vibrio, and quantified the evolutionary rates (dN and dS) of all orthologs within each genus. Both evolutionary rate parameters were faster among orthologs found on secondary chromosomes than those on the primary chromosome. Further, in every bacterial genome with multiple chromosomes that we studied, genes on secondary chromosomes exhibited significantly weaker codon usage bias than those on primary chromosomes. Faster evolution and reduced codon bias could in turn result from global effects of chromosome position, as genes on secondary chromosomes experience reduced dosage and expression due to their delayed replication, or selection on specific gene attributes. These alternatives were evaluated using orthologs common to genomes with multiple chromosomes and genomes with single chromosomes. Analysis of these ortholog sets suggested that inherently fast-evolving genes tend to be sorted to secondary chromosomes when they arise; however, prolonged evolution on a secondary chromosome further accelerated substitution rates. In summary, secondary chromosomes in bacteria are evolutionary test beds where genes are weakly preserved and evolve more rapidly, likely because they are used less frequently.  相似文献   

6.
Soil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.  相似文献   

7.
Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences. To address these issues, we have studied the dynamics of the genome architecture in Rhizobium sp. strain NGR234 and analyzed its biological significance. NGR234 genome consists of three replicons: the symbiotic plasmid pNGR234a (536,165 bp), the megaplasmid pNGR234b (>2,000 kb), and the chromosome (>3,700 kb). Here we report that genome analyses of cell siblings showed the occurrence of large-scale DNA rearrangements consisting of cointegrations and excisions between the three replicons. As a result, four new genomic architectures have emerged. Three consisted of the cointegrates between two replicons: chromosome-pNGR234a, chromosome-pNGR234b, and pNGR234a-pNGR234b. The other consisted of a cointegrate of the three replicons (chromosome-pNGR234a-pNGR234b). Cointegration and excision of pNGR234a with either the chromosome or pNGR234b were studied and found to proceed via a Campbell-type mechanism, mediated by insertion sequence elements. We provide evidence showing that changes in the genome architecture did not alter the growth and symbiotic proficiency of Rhizobium derivatives.  相似文献   

8.
Viprey V  Rosenthal A  Broughton WJ  Perret X 《Genome biology》2000,1(6):research0014.1-1417

Background  

In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than 112 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome, that of NGR234 is partitioned into three replicons: a chromosome of about 3.5 Mb, a megaplasmid of more than 2 Mb (pNGR234b) and pNGR234a, a 536,165 bp plasmid that carries most of the genes required for symbioses with legumes. Symbiotic loci represent only a small portion of all the genes coded by rhizobial genomes, however. To rapidly characterize the two largest replicons of NGR234, the genome of strain ANU265 (a derivative strain cured of pNGR234a) was analyzed by shotgun sequencing.  相似文献   

9.
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism''s niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB).  相似文献   

10.
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species of opportunistic bacterial pathogens, which are particularly problematic for cystic fibrosis patients and immunocompromised individuals. Bcc genomes consist of multiple replicons, and each strain sequenced to date has three chromosomes. In addition to genes thought to be essential for survival, each chromosome carries at least one rRNA operon. We isolated three mutants during a transposon mutagenesis screen that were non-pathogenic in a Caenorhabditis elegans infection model. It was demonstrated that these mutants had lost chromosome 3 (c3), and that the observed attenuation of virulence was a consequence of this. We constructed a c3 mini-replicon and used it to cure c3 from strains of several Bcc species by plasmid incompatibility, resulting in nine c3-null strains covering seven Bcc species. Phenotypic characterization of c3-null mutants revealed that they were attenuated in virulence in multiple infection hosts (rat, zebrafish, C. elegans, Galleria mellonella and Drosophila melanogaster), that they exhibited greatly diminished antifungal activity, and that c3 was required for d-xylose, fatty acid and pyrimidine utilization, as well as for exopolysaccharide production and proteolytic activity in some strains. In conclusion, we show that c3 is not an essential chromosomal element, rather a large plasmid that encodes virulence, secondary metabolism and other accessory functions in Bcc bacteria.  相似文献   

11.
Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements.  相似文献   

12.
With the completion of the Human Genome Project in 2003, many new projects to sequence bacterial genomes were started and soon many complete bacterial genome sequences were available. The sequenced genomes of pathogenic bacteria provide useful information for understanding host-pathogen interactions. These data prove to be a new weapon in fighting against pathogenic bacteria by providing information about potential drug targets. But the limitation of computational tools for finding potential drug targets has hindered the process and further experimental analysis. There are many in silico approaches proposed for finding drug targets but only few have been automated. One such approach finds essential genes in bacterial genomes with no human homologue and predicts these as potential drug targets. The same approach is used in our tool. T-iDT, a tool for the identification of drug targets, finds essential genes by comparing a bacterial gene set against DEG (Database of Essential Genes) and excludes homologue genes by comparing against a human protein database. The tool predicts both the set of essential genes as well as potential target genes for the given genome. The tool was tested with Mycobacterium tuberculosis and results were validated. With default parameters, the tool predicted 236 essential genes and 52 genes to encode potential drug targets. A pathway-based approach was used to validate these potential drug target genes. The pathway in which the products of these genes are involved was determined. Our analysis shows that almost all these pathways are very essential for the bacterial survival and hence these genes encode possible drug targets. Our tool provides a fast method for finding possible drug targets in bacterial genomes with varying stringency level. The tool will be helpful in finding possible drug targets in various pathogenic organisms and can be used for further analysis in novel therapeutic drug development. The tool can be downloaded from http://www.milser.co.in/research.htm and http://www.srmbioinformatics.edu.in/ forum.htm.  相似文献   

13.
The alphaproteobacterial Roseobacter clade (Rhodobacterales) is one of the most important global players in carbon and sulfur cycles of marine ecosystems. The remarkable metabolic versatility of this bacterial lineage provides access to diverse habitats and correlates with a multitude of extrachromosomal elements. Four non-homologous replication systems and additional subsets of individual compatibility groups ensure the stable maintenance of up to a dozen replicons representing up to one third of the bacterial genome. This complexity presents the challenge of successful partitioning of all low copy number replicons. Based on the phenomenon of plasmid incompatibility, we developed molecular tools for target-oriented plasmid curing and could generate customized mutants lacking hundreds of genes. This approach allows one to analyze the relevance of specific replicons including so-called chromids that are known as lifestyle determinants of bacteria. Chromids are extrachromosomal elements with a chromosome-like genetic imprint (codon usage, GC content) that are essential for competitive survival in the natural habitat, whereas classical dispensable plasmids exhibit a deviating codon usage and typically contain type IV secretion systems for conjugation. The impact of horizontal plasmid transfer is exemplified by the scattered occurrence of the characteristic aerobic anoxygenic photosynthesis among the Roseobacter clade and the recently reported transfer of the 45-kb photosynthesis gene cluster to extrachromosomal elements. Conjugative transmission may be the crucial driving force for rapid adaptations and hence the ecological prosperousness of this lineage of pink bacteria.  相似文献   

14.
Rhizobia are a well-known group of soil bacteria that establish symbiotic relationship with leguminous plants, fix atmospheric nitrogen, and improve soil fertility. To fulfill multiple duties in soil, rhizobia are elaborated with a large and complex multipartite genome composed of several replicons. The genetic material is divided among various replicons, in a way to cope with, and satisfy the diverse functions of rhizobia. In addition to the main chromosome, which is carrying the essential (core) genes required for sustaining cell life, the rhizobia genomes contain several extra-chromosomal plasmids, carrying the nonessential (accessory) genes. Occasionally, some mega-plasmids, denoted as secondary chromosomes or chromids, carry some essential (core) genes. Furthermore, specific accessory gene sequences (the symbiotic chromosomal islands) are incorporated in the main chromosome of some rhizobia species in Bradyrhizobium and Mesorhizobium genera. Plasmids in rhizobia are of variable sizes. All of the plasmids in a Rhizobium cell constitute about 30–50% of the genome. Rhizobia plasmids have specific characters such as miscellaneous genes, independent replication system, self-transmissibility, and instability. The plasmids regulate several cellular metabolic functions and enable the host rhizobia to survive in diverse habitats and even under stress conditions. Symbiotic plasmids in rhizobia are receiving increased attention because of their significance in the symbiotic nitrogen fixation process. They carry the symbiotic (nod, nif and fix) genes, and some non-symbiotic genes. Symbiotic plasmids are conjugally-transferred by the aid of the non-symbiotic, self-transmissible plasmids, and hence, brings about major changes in the symbiotic interactions and host specificity of rhizobia. Besides, the rhizobia cells harbor one or more accessory, non-symbiotic plasmids, carrying genes regulating various metabolic functions, rhizosphere colonization, and nodulation competitiveness. The entire rhizobia-plasmid pool interacting in harmony and provides rhizobia with substantial abilities to fulfill their complex symbiotic and non-symbiotic functions in variable environments. The above concepts are extensively reviewed and fairly discussed.  相似文献   

15.
Amongst prokaryotic genomes, those of nitrogen-fixing members of the Rhizobiaceae family are relatively large (6-9 Mb), often include mega-plasmids of 1.5-2 Mb, and contain numerous families of repeated DNA sequences. Although most essential nodulation and nitrogen fixation genes are well characterized, these represent only a small fraction of the DNA content. Little is known about the detailed structure of rhizobial genomes. With the development of sequencing techniques and new bio-informatic tools such studies become possible, however. Using the 2275 shotgun sequences of ANU265 (a derivative of NGR234 cured of pNGR234a), we have identified numerous families of repeats. Amongst these, the 58-bp-long NGRREP-4 represents the third most abundant DNA sequence after the RIME1 and RIME2 repeats, all of which are also found in Sinorhizobium meliloti. Surprisingly, studies on the distribution of these elements showed that in proportion to its size, the chromosome of NGR234 carries many more RIME modules than pNGR234a or pNGR234b. Together with the presence in NGR234 and S. meliloti 1021 of an insertion sequence (IS) element more conserved than essential nodulation and nitrogen fixation genes, these results give new insights into the origin and evolution of rhizobial genomes.  相似文献   

16.
G+C3 structuring along the genome: a common feature in prokaryotes   总被引:1,自引:0,他引:1  
The heterogeneity of gene nucleotide content in prokaryotic genomes is commonly interpreted as the result of three main phenomena: (1) genes undergo different selection pressures both during and after translation (affecting codon and amino acid choice); (2) genes undergo different mutational pressure whether they are on the leading or lagging strand; and (3) genes may have different phylogenetic origins as a result of lateral transfers. However, this view neglects the necessity of organizing genetic information on a chromosome that needs to be replicated and folded, which may add constraints to single gene evolution. As a consequence, genes are potentially subjected to different mutation and selection pressures, depending on their position in the genome. In this paper, we analyze the structuring of different codon usage measures along completely sequenced bacterial genomes. We show that most of them are highly structured, suggesting that genes have different base content, depending on their location on the chromosome. A peculiar pattern of genome structure, with a tendency toward an A+T-enrichment near the replication terminus, is found in most bacterial phyla and may reflect common chromosome constraints. Several species may have lost this pattern, probably because of genome rearrangements or integration of foreign DNA. We show that in several species, this enrichment is associated with an increase of evolutionary rate and we discuss the evolutionary implications of these results. We argue that structural constraints acting on the circular chromosome are not negligible and that this natural structuring of bacterial genomes may be a cause of overestimation in lateral gene transfer predictions using codon composition indices.  相似文献   

17.
Microbial genomes are thought to be mosaic, making it difficult to decipher how these genomes have evolved. Whole-genome nearest-neighbor analysis was applied to the Sinorhizobium meliloti pSymB replicon to determine its origin, the degree of horizontal transfer, and the conservation of gene order. Prediction of the nearest neighbor based on contextual information, i.e., the nearest phylogenetic neighbor of adjacent genes, provided useful information for genes for which phylogenetic relationships could not be established. A large portion of pSymB genes are most closely related to genes in the Agrobacterium tumefaciens linear chromosome, including the rep and min genes. This suggests a common origin for these replicons. Genes with the nearest neighbor from the same species tend to be grouped in "patches". Gene order within these patches is conserved, but the content of the patches is not limited to operons. These data show that 13% of pSymB genes have nearest neighbors in species that are not members of the Rhizobiaceae family (including two archaea), and that these likely represent genes that have been involved in horizontal transfer.  相似文献   

18.
19.
Historically, the prokaryotic genome was assumed to consist of a single circular replicon. However, as more microbial genome sequencing projects are completed, it is becoming clear that multipartite genomes comprised of more than one chromosome are not unusual among prokaryotes. Chromosomes are distinguished from plasmids by the presence of essential genes as well as characteristic cell cycle-linked replication kinetics; unlike plasmids, chromosomes initiate replication once per cell cycle. The existence of multipartite prokaryotic genomes raises several questions regarding how multiple chromosomes are replicated and segregated during the cell cycle. These divided genomes also introduce questions regarding chromosome evolution and genome stability. In this review, we discuss these and other issues, with particular emphasis on the cholera pathogen Vibrio cholerae.  相似文献   

20.
Integrating conjugative elements (ICEs) are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter–ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA) and ICE (s065 and s066) loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage λ Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号