首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A protein complex which specifically complements defects of XP-C cell extracts in vitro was previously purified to near homogeneity from HeLa cells. The complex consists of two tightly associated proteins: the XPC gene product and HHR23B, one of two human homologs of the Saccharomyces cerevisiae repair gene product Rad23 (Masutani et al., EMBO J. 13:1831-1843, 1994). To elucidate the roles of these proteins in "genome-overall" repair, we expressed the XPC protein in a baculovirus system and purified it to near homogeneity. The recombinant human XPC (rhXPC) protein exhibited a high level of affinity for single-stranded DNA and corrected the repair defect in XP-C whole-cell extracts without extra addition of recombinant HHR23B (rHHR23B) protein. However, Western blot (immunoblot) experiments revealed that XP-C cell extracts contained excess endogenous HHR23B protein, which might be able to form a complex upon addition of the rhXPC protein. To investigate the role of HHR23B, we fractionated the XP-C cell extracts and constructed a reconstituted system in which neither endogenous XPC nor HHR23B proteins were present. In this assay system, rhXPC alone weakly corrected the repair defect, while significant enhancement of the correcting activity was observed upon coaddition of rHHR23B protein. Stimulation of XPC by HHR23B was found with simian virus 40 minichromosomes as well as with naked plasmid DNA and with UV- as well as N-acetoxy-2- acetylfluorene-induced DNA lesions, indicating a general role of HHR23B in XPC functioning in the genome-overall nucleotide excision repair subpathway.  相似文献   

2.
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F.  相似文献   

3.
4.
5.
Multiple myeloma (MM) is a plasma-cell disorder in which malignant plasma cells accumulate in the bone marrow and usually produce a monoclonal immunoglobulin. Usual presenting features of overt MM include recurrent osteolytic lesions, bacterial infections, anemia and renal insufficiency. MM is responsible for about 1 percent of all cancer-related deaths in Western countries. Its epidemiologic pattern remains obscure, and its cause unknown [1]. The presence of somatic mutations within the immunoglobulin genes of myeloma cells indicate that the putative myeloma-cell precursors have been stimulated by antigens within germinal centers and are either memory B cells or migrating plasmablasts. Myeloma cells proliferate slowly in the bone marrow and display a weak apoptotic index in vivo [2]. This suggest that some defects in the apoptotic process could be involved in this neoplasia. Interleukin-6 (IL-6) is known to be an essential survival factor of myeloma cells and to protect them from apoptosis induced by different stimuli (e.g. dexamethasone, CD95, serum starvation, gamma-irradiation). More recently, important works have been devoted to the biology of the soluble form of the IL-6R alpha i.e., sIL-6R alpha. These works give IL-6/sIL-6R alpha complex an important role in the biology of IL-6. The purpose of the current review is to emphasize the role of this complex in the pathogenesis of MM.  相似文献   

6.
The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.  相似文献   

7.
Xie Z  Liu S  Zhang Y  Wang Z 《Nucleic acids research》2004,32(20):5981-5990
Nucleotide excision repair (NER) removes many different types of DNA lesions. Most NER proteins are indispensable for repair. In contrast, the yeast Rad23 represents a class of accessory NER proteins, without which NER activity is reduced but not eliminated. In mammals, the complex of HR23B (Rad23 homolog) and XPC (yeast Rad4 homolog) has been suggested to function in the damage recognition step of NER. However, the precise function of Rad23 or HR23B in NER remains unknown. Recently, it was suggested that the primary function of RAD23 protein in NER is its stabilization of XPC protein. Here, we tested the significance of Rad23-mediated Rad4 stabilization in NER, and analyzed the repair and biochemical activities of purified yeast Rad23 protein. Cellular Rad4 was indeed stabilized by Rad23 in the absence of DNA damage. Persistent overexpression of Rad4 in rad23 mutant cells, however, largely failed to complement the ultraviolet sensitivity of the mutant. Consistently, deficient NER in rad23 mutant cell extracts could not be complemented by purified Rad4 protein in vitro. In contrast, partial complementation was observed with purified Rad23 protein. Specific complementation to the level of wild-type repair was achieved by adding purified Rad23 together with small amounts of Rad4 protein to rad23 mutant cell extracts. Purified Rad23 protein was unable to bind to DNA, but stimulated the binding activity of purified Rad4 protein to N-acetyl-2-aminofluorene-damaged DNA. These results support two roles of Rad23 protein in NER: (i) its direct participation in the repair biochemistry, possibly due to its stimulatory activity on Rad4-mediated damage binding/recognition; and (ii) its stabilization of cellular Rad4 protein.  相似文献   

8.
Kim B  Ryu KS  Kim HJ  Cho SJ  Choi BS 《The FEBS journal》2005,272(10):2467-2476
Human cells contain two homologs of the yeast RAD23 protein, hHR23A and hHR23B, which participate in the DNA repair process. hHR23B houses a domain (residues 277-332, called XPCB) that binds specifically and directly to the xeroderma pigmentosum group C protein (XPC) to initiate nucleotide excision repair (NER). This domain shares sequence homology with a heat shock chaperonin-binding motif that is also found in the stress-inducible yeast phosphoprotein STI1. We determined the solution structure of a protein fragment containing amino acids 275-342 of hHR23B (termed XPCB-hHR23B) and compared it with the previously reported solution structures of the corresponding domain of hHR23A. The periodic positioning of proline residues in XPCB-hHR23B produced kinked alpha helices and assisted in the formation of a compact domain. Although the overall structure of the XPCB domain was similar in both XPCB-hHR23B and XPCB-hHR23A, the N-terminal part (residues 275-283) of XPCB-hHR23B was more flexible than the corresponding part of hHR23A. We tried to infer the characteristics of this flexibility through (15)N-relaxation studies. The hydrophobic surface of XPCB-hHR23B, which results from the diverse distribution of N-terminal region, might give rise to the functional pleiotropy observed in vivo for hHR23B, but not for hHR23A.  相似文献   

9.
10.
11.
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1 cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3′ tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3′ tails after treatment with the rare-cutting endonuclease I-SceI. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3′ tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3′ tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SceI-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SceI-induced double-strand breaks.  相似文献   

12.
We have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ hybridization and Southern blot analysis of mouse x human somatic cell hybrids, the gene was localized to human chromosome 10q11-q21. An RFLP detected within the ERCC6 locus can be helpful in linkage analysis.  相似文献   

13.
Cisplatin is a highly potent cytotoxic and genotoxic agent used in the chemotherapy of various types of tumors. Its cytotoxic effect is supposed to be due to the induction of intra- and interstrand DNA cross-links which are repaired via the nucleotide excision repair (NER) pathway. Here, we elucidated the mechanism of cisplatin-induced cytotoxicity in mutants derived from CHO-9 cells defective in NER. We compared 43-3B and 27-1 cells deficient for ERCC1 and ERCC3, respectively, with the corresponding wild-type and ERCC1 complemented 43-3B cells. It is shown that cells defective in ERCC1 are more sensitive than cells defective in ERCC3 with regard to cisplatin-induced reproductive cell death. ERCC1 and ERCC3 mutants showed a higher frequency of apoptosis and, to a lesser degree, necrosis compared to repair proficient cells. Induction of apoptosis in both ERCC1 and ERCC3 defective cells was accompanied by decline in Bcl-2 protein level, activation of caspases 8, 9 and 3 and poly(ADP-ribose)polymerase (PARP) cleavage. Since the mutant cells are defective in the repair of cisplatin-induced DNA lesions, the data demonstrate that non-repaired cisplatin-induced DNA adducts act as a trigger of the mitochondrial apoptotic pathway by down-regulation of Bcl-2 followed by caspase activation.  相似文献   

14.
Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5' and 3' to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures.  相似文献   

15.
Resistance to chemotherapy represents a major cause for treatment failure in multiple myeloma (MM). Herein, this study was conducted to explore the effect of SDF-1/CXCR4 and interleukin-6 (IL-6) in MM cell adhesion-mediated chemoresistance. Enzyme-linked immunosorbent assay was applied to detect expressions of SDF-1α and IL-6 in MM patients and healthy controls. RPMI-8226 cells and isolated bone marrow stromal cells (BMSCs) were stimulated using recombinant SDF-1α and IL-6. Effect of cocultured BMSCs and RPMI-8226 cells on chemosensitivity and apoptosis of RPMI-8226 cells was analyzed. Effect of doxorubicin on the adhesion rate of RPMl-8226 cells to BMSCs was analyzed by calcitonin test. Effect of SDF-1α-induced upregulation of IL-6 on chemotherapeutic resistance and apoptosis of RPMI-8226 cells in adhesion state was analyzed. Cell adhesion model was treated with recombinant protein SDF-1α and phosphoinositide 3-kinase (P13K) inhibitor Wortmarmin. The levels of P13K and protein kinase B (AKT) and its phosphorylation as well as the expression of IL-6 were analyzed. SDF-1α was positively correlated with IL-6. Recombinant human SDF-1α increased IL-6 expression and induced IL-6 secretion in a time- and dose-dependent manner in BMSCs, which was inhibited by IL-6 and SDF-1α neutralizing antibodies. Coculture of MM cells with BMSCs increased the drug resistance and inhibited the apoptosis on MM cells. SDF-1α-induced IL-6 upregulation mediates chemoresistance and apoptosis of RPMI-8226 cells in adhesion state. SDF-1α may up-regulate the expression of IL-6 by activating the P13K/AKT signaling pathway. SDF-1/CXCR4 may up-regulate the expression of IL-6 through the activation of the P13K/AKT signaling pathway, thereby affecting the chemoresistance mediated by adhesion in MM cells.  相似文献   

16.
The stability of the tumor suppressor protein p53 is regulated via the ubiquitin-proteasome-dependent proteolytic pathway. Like most substrates of this pathway, p53 is modified by the attachment of polyubiquitin chains prior to proteasome-mediated degradation. However, the mechanism(s) involved in the delivery of polyubiquitylated p53 molecules to the proteasome are currently unclear. Here, we show that the human DNA repair protein hHR23 binds to polyubiquitylated p53 via its carboxyl-terminal ubiquitin-associated (Uba) domain shielding p53 from deubiquitylation in vitro and in vivo. In addition, downregulation of hHR23 expression within cells by RNA interference results in accumulation of p53. Since the Ubl domain of hHR23 has been shown to interact with the 26S proteasome, we propose that hHR23 is intrinsically involved in the delivery of polyubiquitylated p53 molecules to the proteasome. In this model, the Uba domain of hHR23 binds to polyubiquitin chains formed on p53 and protects them from deubiquitylation, while the Ubl domain delivers the polyubiquitylated p53 molecules to the proteasome.  相似文献   

17.
The human repair gene ERCC6--a presumed DNA (or RNA) helicase--has recently been found to function specifically in preferential nucleotide excision repair (NER). This NER subpathway is primarily directed towards repair of (the transcribed strand of) active genes. Mutations in the ERCC6 gene are responsible for the human hereditary repair disorder Cockayne's syndrome complementation group B, the most common form of the disease. In this report, the genomic organization and expression of this gene are described. It consists of at least 21 exons, together with the promoter covering a region of 82-90 kb on the genome. Postulated functional domains deduced from the predicted amino acid sequence, including 7 distinct helicase signatures, are--with one exception--encoded on separate exons. Consensus splice donor and acceptor sequences are present at all exon borders with the exception of the unusual splice donor at the end of exon VII. The 'invariable' GT dinucleotide in the consensus (C,A)AG/GTPuAGT is replaced by the exceptional GC. Based on 42 GC splice donor sequences identified by an extensive literature search we found a statistically highly significant better 'overall' match of the surrounding nucleotides to the consensus sequence compared to normal GT-sites. This confirms and extends the observation made recently by Jackson (Nucl. Acids Res., 19, 3795-3798 (1991)) derived from analysis of 26 cases. Analysis of ERCC6 cDNA clones revealed the occurrence of alternative polyadenylation, resulting in the (differential) expression of two mRNA molecules (which are barely detectable on Northern blots) of 5 and 7 kb in length.  相似文献   

18.
Molecular cloning of the human DNA excision repair gene ERCC-6.   总被引:13,自引:1,他引:13       下载免费PDF全文
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.  相似文献   

19.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号