首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b3-FeB active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme FeB consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of CuB in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b3 and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an FeB (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of FeB the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b3 taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic FeB will form a μ-oxo bridge to heme b3 in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable μ-oxo bridge between heme b3 and FeB is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme FeB in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

3.
Peroxidases catalyze the oxidation of nitrite to nitrate in the presence of hydrogen peroxide. Two pathways may occur: one entailing the intermediate formation of NO(2) and the other implying the generation of peroxynitrite. The products of nitrite (NO(2) (-) ) oxidation by salivary peroxidase (SPO) and commercial bovine lactoperoxidase (LPO) are studied by utilizing an electrochemical assay that allows the direct, continuous monitoring of NO and/or NO(2) and by HPLC to assess nitrates at the end of the reaction. Dialyzed saliva and LPO, in the presence of H(2) O(2) , convert nitrite into nitrate and form some NO, with a molar ratio of 10(3) . In our experimental conditions, no NO(2) was detectable among the products of nitrite oxidation. SCN(-) inhibits NO formation and so does I(-) , although at higher concentrations. No effects are observed with Cl(-) or Br(-) . We conclude that SPO and LPO transform NO(2) (-) into nitrate-forming small amounts of NO in the presence of H(2) O(2) as an intermediate or a by-product, synthesized through the peroxynitrite pathway.  相似文献   

4.
The widespread opinion that N(2)O(3) as a product of NO oxidation is the only nitros(yl)ating agent under aerobic conditions is based on experiments in homogeneous buffered water solutions. In vivo NO is oxidized in heterogeneous media and this opinion is not correct. The equilibrium in the system being dependent on temperature and DeltaG((sol)) for NO, NO(2), isomers of both N(2)O(3), and N(2)O(4). For polar solvents including water, DeltaG((sol)) for N(2)O(3) is high enough, and a stationary concentration of N(2)O(3) in the mixture with other oxides is sufficient to guarantee the hydrolysis of N(2)O(3) to nitrite. In heterogeneous media, the mixture contains solvates NO(2(sol)), N(2)O(3(sol)), and N(2)O(4(sol)) at stationary nonequilibrium concentrations. As far as DeltaG((sol)) is decreased in heterogeneous mixtures with low polar solvents and/or at increased temperatures, the equilibrium in such a system shifts to NO(2). Although NO(2) is a reactive free radical, it almost does not react with water. In contrast, the reaction with most functional protein groups efficiently proceeds by a radical type with the formation of nitrite and new radicals (X) further stabilized in various forms. Therefore, the ratio of the nitrosylated and nitrated products yields depends on actual concentrations of all NO(x).  相似文献   

5.
The contribution of nitric oxide (NO) to the hemodynamic effects associated with alcohol oxidation was assessed in rats given either ethanol or water by gastric tube, with and without pre-treatment with either the NO synthase inhibitor N(omega)-monomethyl-L-arginine (L-NMMA; 15 mg/Kg i.p.) or the alcohol dehydrogenase inhibitor 4-methylpyrazole (4-MP; 82 mg/Kg i.p.). Alcohol increased plasma NO (measured with chemiluminescence) by 63%. This was prevented by either L-NMMA or 4-MP. Cardiac output and regional blood flows were determined with 57Cobalt-labeled microspheres. Alcohol markedly enhanced portal blood flow (130 +/- 6 ml/min/Kg vs. 62 +/- 4, in controls; p < 0.01) with no changes in the hepatic, splenic or pancreatic arterial blood flows, indicating that the vasodilatation is mainly mesenteric. In addition, it quadrupled the coronary blood flow, doubled the renal flow and increased cardiac output by 38%, with no significant changes in pulmonary, cerebral or testicular flows. All the stimulatory effects of ethanol on flow, as well as the rise in NO levels, were prevented by L-NMMA, incriminating NO as the mediator of the hemodynamic effects of ethanol oxidation, acting probably via acetate and adenosine.  相似文献   

6.
Metabolism of nitric oxide in soil and denitrifying bacteria   总被引:1,自引:0,他引:1  
Abstract Production and consumption of NO was measured under anaerobic conditions in a slightly alkaline and an acidic soil as well as in pure cultures of denitrifying Pseudomonas aeruginosa, P. stutzeri, P. fluorescens, Paracoccus denitrificans, Azospirillum brasilense , and A. lipoferum . Growing bacterial cultures reduced nitrate and intermediately accumulated nitrite, NO, N2O, but not NO2. Addition of formaldehyde inhibited NO production and NO consumption. In the presence of acetylene NO was reduced to N2O. Net NO release rates in denitrifying bacterial suspensions and in soil samples decreased hyperbolically with increasing NO up to mixing ratios of about 5 ppmv NO. This behaviour could be modelled by assuming a constant rate of NO production simultaneously with a NO consumption activity that increased with NO until V max was reached. The data allowed calculation of the gross rates ( P ) of NO production, of the rate constants ( k ), V max and K m of NO consumption, and of the NO compensation mixing ratio ( m c). In soil, P was larger than V max resulting in net NO release even at high NO mixing ratios unless P was selectively inhibited by chlorate + chlorite or by aerobic incubation conditions. In bacteria, V max was somewhat larger than P resulting in net NO uptake at high NO mixing ratios. Both P and V max were dependent on the supply of electron donor (e.g. glucose). Both in soil (aerobic or anaerobic) and in pure culture, the K m values of NO consumption were in a similar low range of about 0.5–6.0 nM. Anaerobic soil and denitrifying bacteria exhibited m c values of 1.6–2.1 ppmv NO and 0.2–4.0 ppmv NO, respectively.  相似文献   

7.
Abstract Anaerobic production and consumption of NO was measured in a calcic cambisol (KBE; pH 7.3) and a forest luvisol (PBE; pH 4.4) which were incubated at 80% water-holding capacity and continuously flushed with N2. Both NO production and NO consumption were negligibly low when nitrate and nitrite concentrations in the soil were exhausted. Addition of glucose alone had no effect, but addition of nitrate ± glucose greatly stimulated both NO production and NO consumption. NO consumption followed an apparent first-order reaction at low NO mixing ratios (1–3 ppmv), but a higher NO mixing ratios it followed Michaelis-Menten kinetics. In PBE the apparent K m was 980 ppbv NO (1.92 nM in soil water). During reduction of nitrate, nitrite intermediately accumulated and simultaneously, production rates of NO and N2O were at the maximum. Production rates of NO plus N2O amounted to 20% and 34% of the nitrate reduction rate in KBE and PBE, respectively. NO production was hyperbolically related to the nitrite concentration, indicating an apparent Km of 1.6 μg nitrite-N g−1 d.w. soil (equivalent to 172 μM nitrite in soil solution) for the reduction of nitrite to NO in KBE. Under nitrate and nitrite-limiting conditions, 62–76% and 93–97% of the consumed NO-N were recovered as N2O-N in KBE and PBE, respectively. Gassing of nitrate plus nitrite-depretsu KBE with increasing mixing ratios of NO2 resulted in increasing rates of NO2 uptake and presumably in the formation of low concentrations of nitrite and nitrate. This NO2 uptake resulted in increasing rates of both NO production and NO consumption indicating that nitrite or nitrate was limiting for both reactions.  相似文献   

8.
Abstract NO production and consumption rates as well as N2O accumulation rates were measured in a loamy cambisol which was incubated under different conditions (i.e. soil moisture content, addition of nitrogen fertilizer and/or glucose, aerobic or anaerobic gas phase). Inhibition of nitrification with acetylene allowed us to distinguish between nitrification and denitrification as sources of NO and N2O. Under aerobic conditions untreated soil showed very low release of NO and N2O but high consumption of NO. Fertilization with NH4+ or urea stimulated both NO and N2O production by nitrification. Addition of glucose at high soil moisture contents led to increased N2 and N2O production by denitrification, but not to increased NO production rates. Anaerobic conditions, however, stimulated both NO and N2O production by denitrification. The production of NO and N2O was further stimulated at low moisture contents and after addition of glucose or NO3. Anaerobic consumption of NO by denitrification followed Michaelis-Menten kinetics and was stimulated by addition of glucose and NO3. Aerobic consumption of NO followed first-order kinetics up to mixing ratios of at least 14 ppmv NO, was inhibited by autoclaving but not by acetylene, and decreased with increasing soil moisture content. The high NO-consumption activity and the effects of soil moisture on the apparent rates of anaerobic and aerobic production and consumption of NO suggest that diffusional constraints have an important influence on the release of NO, and may be a reason for the different behaviour of NO release vs N2O release.  相似文献   

9.
Abstract NO production and consumption rates as well as N2O accumulation rates were measured in a loamy cambisol which was incubated under different conditions (i.e. soil moisture content, addition of nitrogen fertilizer and/or glucose, aerobic or anaerobic gas phase). Inhibition of nitrification with acetylene allowed us to distinguish between nitrification and denitrification as sources of NO and N2O. Under aerobic conditions untreated soil showed very low release of NO and N2O but high consumption of NO. Fertilization with NH4+ or urea stimulated both NO and N2O production by nitrification. Addition of glucose at high soil moisture contents led to increased N2 and N2O production by denitrification, but not to increased NO production rates. Anaerobic conditions, however, stimulated both NO and N2O production by denitrification. The production of NO and N2O was further stimulated at low moisture contents and after addition of glucose or NO3. Anaerobic consumption of NO by denitrification followed Michaelis-Menten kinetics and was stimulated by addition of glucose and NO3. Aerobic consumption of NO followed first-order kinetics up to mixing ratios of at least 14 ppmv NO, was inhibited by autoclaving but not by acetylene, and decreased with increasing soil moisture content. The high NO-consumption activity and the effects of soil moisture on the apparent rates of anaerobic and aerobic production and consumption of NO suggest that diffusional constraints have an important influence on the release of NO, and may be a reason for the different behaviour of NO release vs N2O release.  相似文献   

10.
Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses.  相似文献   

11.
Nitric oxide (NO) is a widespread signaling molecule with potentially multifarious actions of relevance to health and disease. A fundamental determinant of how it acts is its concentration, but there remains a lack of coherent information on the patterns of NO release from its sources, such as neurons or endothelial cells, in either normal or pathological conditions. We have used detector cells having the highest recorded NO sensitivity to monitor NO release from brain tissue quantitatively and in real time. Stimulation of NMDA receptors, which are coupled to activation of neuronal NO synthase, routinely generated NO signals from neurons in cerebellar slices. The average computed peak NO concentrations varied across the anatomical layers of the cerebellum, from 12 to 130 pm. The mean value found in the hippocampus was 200 pm. Much variation in the amplitudes recorded by individual detector cells was observed, this being attributable to their location at variable distances from the NO sources. From fits to the data, the NO concentrations at the source surfaces were 120 pm to 1.4 nm, and the underlying rates of NO generation were 36-350 nm/s, depending on area. Our measurements are 4-5 orders of magnitude lower than reported by some electrode recordings in cerebellum or hippocampus. In return, they establish coherence between the NO concentrations able to elicit physiological responses in target cells through guanylyl cyclase-linked NO receptors, the concentrations that neuronal NO synthase is predicted to generate locally, and the concentrations that neurons actually produce.  相似文献   

12.
It is commonly accepted that the major effect of nitroglycerin (NG) is realized through the release of nitric oxide (NO) catalyzed by aldehyde dehydrogenase-2 (ALDH2). In addition, it has been shown that NG inhibits mitochondrial respiration. The aim of this study was to clarify whether NG-mediated inhibition of mitochondrial respiration is mediated by NO. In rat liver mitochondria, NG inhibited complex-I-dependent respiration and induced reactive oxygen species (ROS) production, preferentially at complex I. Both effects were insensitive to chloral hydrate, an ALDH2 inhibitor. Nitrite, an NG intermediate, had no influence on either mitochondrial respiration or the production of ROS. NO inhibited preferentially complex I but did not elevate ROS production. Hemoglobin, an NO scavenger, and blue light had contrary effects on mitochondria inhibited by NO or NG. In summary, our data suggest that although NG induces vasodilatation via NO release, it causes mitochondrial dysfunction via an NO-independent pathway.  相似文献   

13.
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.  相似文献   

14.
The effect of aminoguanidine (a selective inhibitor of inducible nitric oxide synthase) on allyl alcohol-induced liver injury was assessed by the measurement of serum ALT and AST activities and histopathological examination. When aminoguanidine (50-300 mg/kg, i.p.) was administered to mice 30 min before a toxic dose of allyl alcohol (75 microL/kg, i.p.), significant changes related to liver injury were observed. In the presence of aminoguanidine the level of ALT and AST enzymes were significantly decreased. All symptoms of liver necrosis produced by allyl alcohol toxicity almost completely disappeared when animals were pretreated with aminoguanidine at 300 mg/kg. Depletion of hepatic glutathione as a consequence of allyl alcohol metabolism was minimal in mice pretreated with aminoguanidine at 300 mg/kg. It was found that the inhibition of toxicity was not due to alteration in allyl alcohol metabolism since aminoguanidine did not effect alcohol dehydrogenase activity both in vivo and in vitro.  相似文献   

15.
Nitric oxide and nitric oxide synthase activity in plants   总被引:26,自引:0,他引:26  
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.  相似文献   

16.
Laminar shear stress (LSS) is known to increase endothelial nitric oxide (NO) production, which is essential for vascular health, through expression and activation of nitric oxide synthase 3 (NOS3). Recent studies demonstrated that LSS also increases the expression of argininosuccinate synthetase 1 (ASS1) that regulates the provision of L-arginine, the substrate of NOS3. It was thus hypothesized that ASS1 might contribute to vascular health by enhancing NO production in response to LSS. This hypothesis was pursued in the present study by modulating NOS3 and ASS1 levels in cultured endothelial cells. Exogenous expression of either NOS3 or ASS1 in human umbilical vein endothelial cells increased NO production and decreased monocyte adhesion stimulated by tumor necrosis factor-α (TNF-α). The latter effect of overexpressed ASS1 was reduced when human umbilical vein endothelial cells were co-treated with small interfering RNAs (siRNAs) for ASS1 or NOS3. SiRNAs of NOS3 and ASS1 attenuated the increase of NO production in human aortic endothelial cells stimulated by LSS (12 dynes·cm(-2)) for 24 h. LSS inhibited monocyte adhesion to human aortic endothelial cells stimulated by TNF-α, but this effect of LSS was abrogated by siRNAs of NOS3 and ASS1 that recovered the expression of vascular cell adhesion molecule-1. The current study suggests that the expression of ASS1 harmonized with that of NOS3 may be important for the optimized endothelial NO production and the prevention of the inflammatory monocyte adhesion to endothelial cells.  相似文献   

17.
Curcumin, a phytochemical with antioxidant and other cytoprotective properties, has been reported to reduce nitrite formation during nitric oxide (NO) oxidation in solution. This decrease in nitrite production was attributed to the direct sequestration of NO by curcumin. In this report, we confirm that curcumin inhibits nitrite formation from DEA/NO-derived NO in a concentration-dependent manner. However, curcumin over a concentration range of 3-50 microM had no effect on the concentration of free NO (0.5 microM) in solution at 37 degrees C as assessed using an NO electrode. We conclude that the inhibitory effect of curcumin on the oxidation of NO to nitrite is due to its known sequestration of the reaction intermediate nitrogen dioxide (NO(2)). The ability of curcumin to sequester NO(2), but not NO, suggests that curcumin may be useful for separating the actions of NO(2) from those of NO in various biological systems.  相似文献   

18.
The mechanism for the reduction of nitric oxide to nitrous oxide and water in an A-type flavoprotein (FprA) in Moorella thermoacetica, which has been proposed to be a scavenging type of nitric oxide reductase, has been investigated using density functional theory (B3LYP). A dinitrosyl complex, [{FeNO}7]2, has previously been proposed to be a key intermediate in the NO reduction catalyzed by FprA. The electrons and protons involved in the reduction were suggested to “super-reduce” the dinitrosyl intermediate to [{FeNO}8]2 or the corresponding diprotonated form, [{FeNO(H)}8]2. In this type of mechanism the electron and/or proton transfers will be a part of the rate-determining step. In the present study, on the other hand, a reaction mechanism is suggested in which N2O can be formed before the protons and electrons enter the catalytic cycle. One of the irons in the diiron center is used to stabilize the formation of a hyponitrite dianion, instead of binding a second NO. Cleaving the N–O bond in the hyponitrite dianion intermediate is the rate-determining step in the proposed reaction mechanism. The barrier of 16.5 kcal mol−1 is in good agreement with the barrier height of the experimental rate-determining step of 14.8 kcal mol−1. The energetics of some intermediates in the “super-reduction” mechanism and the mechanism proceeding via a hyponitrite dianion are compared, favoring the latter. It is also discussed how to experimentally discriminate between the two mechanisms. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite   总被引:1,自引:0,他引:1  
Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium. Less then 15% of the produced NO was due to chemical decomposition of nitrite. Production of NO and especially of N2O increased when the bacteria were incubated under anaerobic conditions at decreasing flow rates of air, or at increasing cell densities. Low concentrations of chlorite (10 M) inhibited the production of NO and N2, but not of nitrite indicating that NO and N2O were not produced during the oxidative conversion of ammonium to nitrite. NO and N2O were produced during reduction of nitrite with hydrazine as electron donor in almost stoichiometric quantities indicating that reduction of nitrite was the main source of NO and N2O.  相似文献   

20.
Cell-free hemoglobin, released from the red cell, may play a major role in regulating the bioavailability of nitric oxide. The abundant serum protein haptoglobin, rapidly binds to free hemoglobin forming a stable complex accelerating its clearance. The haptoglobin gene is polymorphic with two classes of alleles denoted 1 and 2. We have previously demonstrated that the haptoglobin 1 protein–hemoglobin complex is cleared twice as fast as the haptoglobin 2 protein–hemoglobin complex. In this report, we explored whether haptoglobin binding to hemoglobin reduces the rate of nitric oxide scavenging using time-resolved absorption spectroscopy. We found that both the haptoglobin 1 and haptoglobin 2 protein complexes react with nitric oxide at the same rate as unbound cell-free hemoglobin. To confirm these results we developed a novel assay where free hemoglobin and hemoglobin bound to haptoglobin competed in the reaction with NO. The relative rate of the NO reaction was then determined by examining the amount of reacted species using analytical ultracentrifugation. Since complexation of hemoglobin with haptoglobin does not reduce NO scavenging, we propose that the haptoglobin genotype may influence nitric oxide bioavailability by determining the clearance rate of the haptoglobin–hemoglobin complex. We provide computer simulations showing that a twofold difference in the rate of uptake of the haptoglobin–hemoglobin complex by macrophages significantly affects nitric oxide bioavailability thereby providing a plausible explanation for why there is more vasospasm after subarachnoid hemorrhage in individuals and transgenic mice homozygous for the Hp 2 allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号