首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

2.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum T3 and a rise in reverse T3 in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is inhibited in primary hypothyroidism and is almost totally suppressed following L-thyroxine replacement therapy, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in subjects with primary hypothyroidism who were rendered euthyroid by appropriate L-thyroxine replacement therapy for several years. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4, and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.05) and a marked rise in rT3 (P less than 0.05) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Since, the release of thyroid hormones is suppressed by exogenous LT4 administration in these subjects; we conclude that changes in serum T3 and rT3 observed following glucagon administration reflect altered thyroid hormone metabolism in peripheral tissues and not altered release by the thyroid gland.  相似文献   

3.
The in vivo effect of adenosine on the serum levels of glucose, insulin and glucagon in rats fasted for twenty four hours or after an oral glucose load were studied. Under fasting conditions adenosine produced an hyperglycaemia without change in the insulin or glucagon serum levels. After a glucose load adenosine induced a marked hyperglycaemia concomitant to a decrease in insulin serum levels and an increase in glucagon serum levels. Adenosine did not alter the relationship between insulin and glucagon. In vivo adenosine administration altered the secretion of hormones by the islets of Langerhans (increased the release of glucagon and decreased the secretion of insulin) but this was only clearly observable under stimulated conditions. Adenosine did not alter the regulatory mechanism(s) that modulate the relationship between insulin and glucagon.  相似文献   

4.
These studies investigate if crustacean hyperglycemic hormone (CHH) is involved in 5-hydroxytryptamine (5-HT)-induced hyperglycemia. Eyestalk ganglia with intact X-organ-sinus gland complex were dissected from the crayfish Procambarus clarkii and incubated under various experimental conditions. Incubation media were then analyzed for the presence of released hyperglycemic factor using an in vivo bioassay. The results show that 5-HT enhanced release of hyperglycemic factor in a dose-dependent manner. This stimulatory effect of 5-HT was significantly decreased by adding ketanserin or methysergide (both 5-HT receptor antagonists) into incubation of eyestalk ganglia. Further, activity of the 5-HT-released hyperglycemic factor could be eliminated by adsorption of incubation media with anti-CHH serum but not by preimmune or anti-5-HT serum. These results confirm the hypothesis that 5-HT enhances release of CHH, which in turn elicits hyperglycemic responses. It is probable that 5-HT activates an excitation-secretion coupling mechanism by interacting with receptors located on the X-organ neurosecretory cells.  相似文献   

5.
The present work was undertaken in order to investigate the influence of endocrine pancreas on the adrenal gland of Triturus carnifex. Our experiments aimed at studying the effects of intraperitoneal injections of glucagon on ultrastructural morphological and morphometrical features of steroidogenic and chromaffin tissues, as well as serum levels of aldosterone, corticosterone, norepinephrine (NE) and epinephrine (E). With regard to steroidogenic tissue, in January and November, glucagon decreased lipid droplet content in steroidogenic cells, that showed clear signs of increased activity. Moreover, increased corticosteroid serum levels were found. With regard to chromaffin tissue, in January glucagon played a stimulatory role on PNMT enzyme, eliciting an increase in the presence of E granules, and a decrease in the presence of NE granules, in the chromaffin cells. Moreover, increased E serum levels and decreased NE serum levels were found. In November, glucagon gave rise to a decrease in the presence of NE and E granules in the cells; E serum levels were strongly increased, whereas NE serum levels did not undergo any significant change. These findings suggest an involvement of the endocrine pancreas of the newt in the modulation of adrenal gland activity.  相似文献   

6.
7.
Hormonal regulation of key gluconeogenic enzymes and glucose release by glucagon, dexamethasone, secretin and somatostatin was evaluated in maintenance cultured rat hepatocytes. (i) Phosphoenolpyruvate (PEP)-carboxykinase activity declined rapidly during the first 24 h in serum- and hormone-free culture with a further slight decay during the following 2 days. Dexamethasone and glucagon independently increased PEP-carboxykinase and acted synergistically when added in combination. Glucose-6-phosphatase activity declining linearly during hormone-free culture was stimulated by glucagon. Dexamethasone itself was without significant effects but completely abolished glucagon action. Fructose-1,6-diphosphatase was maintained at its initial level during the first day under control conditions and declined thereafter. Neither glucagon nor dexamethasone affected total activity or substrate (fructose-1,6-diphosphate) affinity of this enzyme. In short-term experiments on cells cultured under control conditions, protein synthesis-dependent stimulation of PEP-carboxykinase by glucagon and the permissive action of dexamethasone was demonstrated. Glucose-6-phosphatase and fructose-1,6-diphosphatase were not altered by hormones within this period. (ii) Stimulation by glucagon of gluconeogenesis was independent of its action on PEP-carboxykinase. Dexamethasone inhibited glycogenolysis but maintained glucose release at control levels probably by stimulation of gluconeogenesis. When added in combination, the glycogen-preserving action of dexamethasone acutely reduced the glucose release in response to glucagon. Glucagon sensitivity remained unchanged. (iii) The gastrointestinal hormones secretin and somatostatin were ineffective in modulating basal or glucagon-stimulated glucose release and gluconeogenic key enzymes. They are therefore unlikely to play a physiological role in hepatic glucose metabolism.  相似文献   

8.
The role of Ca2+ ions in alpha-adrenergic activation of hepatic phosphorylase was studied using isolated rat liver parenchymal cells. The activation of glucose release and phosphorylase by the alpha-adrenergic agonist phenylephrine was impaired in cells in which calcium was depleted by ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) treatment and restored by calcium addition, whereas the effects of a glycogenolytically equivalent concentration of glucagon on these processes were unaffected. EGTA treatment also reduced basal glucose release and phosphorylase alpha activity, but did not alter the level of cAMP or the protein kinase activity ratio (-cAMP/+cAMP) or impair viability as determined by trypan blue exclusion, ATP levels, or gluconeogenic rates. The effect of EGTA on basal phosphorylase and glucose output was also rapidly reversed by Ca2+, but not by other ions. Phenylephrine potentiated the ability of low concentrations of calcium to reactivate phosphorylase in EGTA-treated cells. The divalent cation inophore A23187 rapidly increased phosphorylase alpha and glucose output without altering the cAMP level, the protein kinase activity ratio, and the levels of ATP, ADP, or AMP, The effects of the ionophore were abolished in EGTA-treated cells and restored by calcium addition. Phenylephrine rapidly stimulated 45Ca uptake and exchange in hepatocytes, but did not affect the cell content of 45Ca at late time points. A glycogenolytically equivalent concentration of glucagon did not affect these processes, whereas higher concentrations were as effective as phenylephrine. The effect of phenylephrine on 45Ca uptake was blocked by the alpha-adrenergic antagonist phenoxybenzamine, was unaffected by the beta blocker propranolol, and was not mimicked by isoproterenol. The following conclusions are drawn: (a) alpha-adrenergic activation of phosphorylase and glucose release in hepatocytes is more dependent on calcium than is glucagon activation of these processes; (b) variations in liver cell calcium can regulate phosphorylase alpha levels and glycogenolysis; (c) calcium fluxes across the plasma membrane are stimulated more by phenylephrine than by a glycogenolytically equivalent concentration of glucagon. It is proposed that alpha-adrenergic agonists activate phosphorylase by increasing the cytosolic concentration of Ca2+ ions, thus stimulating phosphorylase kinase.  相似文献   

9.
We have identified a factor from adult rat spleen which stimulates the proliferation of rat hepatocytes. The activity was found in the spleen soluble matrix fraction (1,300xg supernatant of inter-cellular fraction). No activity was found in the spleen cell homogenate, in the spleen insoluble matrix fraction or rat serum. After 4 days of incubation with the spleen factor, the cell number increased 4-fold higher than that at inoculation. The growth stimulation were observed in both fetal bovine serum supplemented medium and hormonally defined medium which contains insulin, epidermal growth factor, glucagon, growth hormone and prolactin. The level of activity in the spleen soluble matrix was not affected by partial hepatectomy or trypsinization. These data indicate that the spleen factor is different from previously characterized effectors of hepatocyte proliferation. The novel factor has been named spleen derived growth factor (SDGF).  相似文献   

10.
A radioimmunoassay was developed which can measure accurately concentrations of mouse 7S nerve growth factor antigens (NGFA) as low as 3·0 ng/ml in serum or tissue homogenates. Extremely large amounts of presumed nerve growth factor were found in the submaxillary gland; but considerable quantities were also present in mouse serum, kidney, adrenal gland and vas deferens. Heart, spleen, liver and muscle contained less of the presumed nerve growth factor, and only small amounts were recovered from brain. Rat adrenal gland and serum from rats, guinea pigs and man contained much less immunologically reactive material. The level of presumed nerve growth factor in the mouse heart was highest at birth and decreased slowly during maturation. In the mouse submaxillary gland the content of presumed nerve growth factor increased rapidly after 2 weeks of postnatal age, with higher levels found in male animals. Destruction with 6-hydroxydopamine of the sympathetic nerves in the hearts of newborn or adult mice did not significantly alter the amount of presumed nerve growth factor recovered in the heart.  相似文献   

11.
The effects of autonomic-nerve stimulation on the activities of phosphorylase (EC 2.4.1.1), dephospho-phosphorylase kinase (EC 2.7.1.38) and phosphorylase phosphatase (EC 3.1.3.17), and on the concentration of adenosine 3', 5'-monophosphate in rabbit liver were investiaged. Results were compared with the effects of epinephrine and glucagon on these enzymes. 1. The acitivity of liver phosphorylase increased rapidly and markedly on electrical stimulation of the splanchnic nerve, or after intraportal administration of epinephrine or glucagon. The activity was not affected by vagal stimulation. 2. The activity of dephospho-phosphorylase kinase increased about 2--3-fold 1 min after injections of epinephrine and glucagon, glucagon causing more activation than epinephrine. The enzyme activity was not altered by splanchnic-nerve, or vagal stimulation. 3. Injections of epinephrine and glucagon caused marked elevation of liver adenosine 3', 5'-monophosphate within a few minutes. With epinephrine, the nucleotide concentration rose to a maximum after 1 min and amounted to about 3-fold increase, while with glucagon the maximum increase of approximately 8-fold increase was observed after 2 min. Stimulation of the splanchnic nerve for 10 min did not affect the adenosine 3', 5'-monophosphate level in the liver. Vagal stimulation also had no effect on the level. 4. The activity of phosphorylase phosphatase decreased promptly (within 30 s) and markedly on splanchnic-nerve stimulation, but did not change significantly on administration of epinephrine of glucagon. A small but insignificant increase in phosphatase activity wasobserved upon vagal stimulation. 5. The effect of Ca-2+ on purified dephospho-phosphorylase kinase was studied. The activity was found to depend partially on free Ca-2+ at low Ca-2+ concentrations (1-10-minus 7--1-10-minus 5 M). 6. These results suggest that the rise in hepatic phosphorylase content upon splanchnic-nerve stimulation, unlike that induced by epinephrine and glucagon, is not mediated by adenosine 3', 5'-monophosphate and subsequent activation of dephospho-phosphorylase kinase, but rather by inactivation of phosphorylase phosphatase. The possible existence of a new factor in this mechanism is discussed.  相似文献   

12.
In primary cultures of rat hepatocytes, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and foetal-calf serum (FCS) prevented the stimulation of amino acid transport by glucagon (cyclic AMP-dependent) and by catecholamines (cyclic AMP-independent), but not by insulin. The insulin effect, as well as the effect of other hormones, were totally inhibited by thrombin through a mechanism independent of its proteolytic activity. The inhibitory effect of growth factors, not found in freshly isolated hepatocytes, was expressed very early in culture (4h). Induction of tyrosine aminotransferase by glucagon or dexamethasone, which, like stimulation of transport, represents a late hormonal effect, was not affected by EGF, PDGF or FCS, but was inhibited by thrombin. In contrast, none of the rapid changes in protein phosphorylation caused by hormones was altered by growth factors. Thus the inhibition by growth factors of hormonal stimulation of transport presumably involves late step(s) in the cascade of events implicated in this hormonal effect.  相似文献   

13.
In order to understand the physiological role of endogenous insulin or glucagon in somatostatin release, isolated rat pancreatic islets were treated with antiinsulin or antiglucagon antiserum in the presence of physiological amounts of glucose. The release of somatostatin was unchanged by treatment with antiinsulin antiserum which neutralized insulin released by 3.3, 8.3 and 16.7 mM of glucose. However, somatostatin release after treatment with antiglucagon antiserum was much reduced at all concentrations of glucose when compared with the release from control serum. Exogenous rat insulin (0.11, 1.11 micrograms/ml) had no effect, but exogenous glucagon (1, 5 micrograms/ml) resulted in a significant increase. Somatostatin release was stimulated by glucose, but the effect was insignificant. These results clearly indicate the physiological role of endogenous glucagon in the modulation of somatostatin release from the islets of Langerhans. Furthermore, the physiological relationship between A, B and D cells may be mediated through the paracrine mechanism.  相似文献   

14.
我们最近曾报道,兔侧脑室内注射胰高血糖素有明显降低血浆自由脂肪酸的作用。本工作又观察了它对空腹血清高密度脂蛋白-胆固醇浓度的影响。结果如下: (1)能引起血清高密度脂蛋白-胆固醇(HDL-c)浓度的降低,且与注射剂量有依赖关系,注射后的75分钟降低最明显,以后逐渐恢复;(2)皮下注射阿托品(0.2mg/kg)或静脉注射酚妥拉明(5mg/kg)均不能消除其降低HDL-c的作用;(3)静脉注射心得安(5mg/kg)能阻断其降低血清HDL-c的作用。这似表明脑中胰高血糖素可能参与对血清HDL-c的调节,并可能是通过肾上腺素β-受体起作用的。  相似文献   

15.
Glucagon has been postulated as an important physiological regulator of histidase (Hal) gene expression; however, it has not been demonstrated whether serum glucagon concentration is associated with the type and amount of protein ingested. The purpose of the present work was to study the association between hepatic Hal activity and mRNA concentration in rats fed 18 or 50% casein, isolated soy protein, or zein diets in a restricted schedule of 6 h for 10 days, and plasma glucagon and insulin concentrations. On day 10, five rats of each group were killed at 0900 (fasting), and then five rats were killed after being given the experimental diet for 1 h (1000). Rats fed 50% casein or soy diets showed higher Hal activity than the other groups studied. Rats fed 50% zein diets had higher Hal activity than rats fed 18% casein, soy, or zein diets, but lower activity than rats fed 50% casein or soy diets. Hal mRNA concentration followed a similar pattern. Hal activity showed a significant association with serum concentrations of glucagon. Serum glucagon concentration was significantly correlated with protein intake. Thus the type and amount of protein consumed affect Hal activity and expression through changes in serum glucagon concentrations.  相似文献   

16.
The effect of the administration of a rabbit anti-substance P serum (ASPS) was studied in rats receiving an acute injection of ethanol. ASPS lowered serum prolactin levels and reduced the hyperprolactinemia induced by ethanol. ASPS also decreased LH serum levels in both saline- and ethanol-treated rats. The effect of ethanol on the concentration of substance P-like immunoreactivity (SP-LI) in the mediobasal hypothalamus and the anterior pituitary gland was also investigated. Ethanol reduced SP-LI in the mediobasal hypothalamus but increased it in the anterior pituitary gland. The presence of ethanol (50 mM) did not affect the K(+)-evoked release of SP-LI from either mediobasal hypothalamus or anterior pituitary gland, though it increased the SP-LI concentration remaining in this gland. These results indicate that ethanol increases the content of SP-LI in the anterior pituitary gland and suggest that substance P may be involved in the prolactin release induced by the acute administration of ethanol.  相似文献   

17.
The control of insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice.  相似文献   

18.
Attempts at altering plasma glucose and, as a consequence, food intake were performed in fed broiler chickens by single i.v. injection of des-His1(Glu9) glucagon amide (a glucagon antagonist) or a non-stimulating anti-insulin serum. Plasma glucose level was not altered by des-His1(Glu9) glucagon amide but was rapidly and largely increased (for at least 2 h) by the injection of the insulin-immune serum. Hour and cumulative food intake were unaltered up to 10 h post injection. These results strongly suggest that in fed chickens, plasma glucose is mainly, if not exclusively, controlled by plasma insulin, and that the transient and heavy hyperglycemia evoked by inhibiting insulin action does not alter food intake.  相似文献   

19.
Using a cDNA probe complementary to rat L-type pyruvate kinase mRNAs, we studied the respective roles of glucocorticoids, thyroid hormones, glucagon, and insulin in the induction of specific mRNAs in the liver of animals refed either a maltose-rich or a fructose-rich diet. Neither adrenalectomized nor thyroidectomized nor diabetic animals could express L-type pyruvate kinase mRNAs in their liver when refed the carbohydrate-rich diets. When the animals were given the missing hormone, the level of hybridizable mRNAs returned to normal values but administration of the hormone alone failed to induce mRNA synthesis in fasted animals. Both glucagon and cyclic AMP abolished the induction of L-type pyruvate kinase mRNAs in refed animals. Exogenous insulin, whatever the dose, could not reverse the inhibitory action of glucagon. Insulin has usually been regarded as the main regulator of L-type pyruvate kinase gene expression. It appears now that glucagon, beside regulating the enzyme activity by phosphorylation mechanisms, may also modulate L-type pyruvate kinase synthesis at a pre-translational level. Consequently, our results show that three conditions are required for the synthesis of liver L-type pyruvate kinase mRNAs: (i) the presence of dietary carbohydrates, (ii) the cessation of glucagon release, and (iii) the presence of permissive hormones, including insulin.  相似文献   

20.
Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9] glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 106 higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (<0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号