首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narcissus mosaic virus   总被引:1,自引:0,他引:1  
Narcissus mosaic virus (NMV) is widespread in British crops of trumpet, large-cupped and double daffodils, but was not found in Narcissus jonquilla or N. tazzeta. Many commercial daffodil cultivars seem totally infected, and roguing or selection is therefore impracticable. Strict precautions by breeders and raisers to prevent infection of new cultivars is recommended. Healthy daffodil seedlings were readily infected with NMV by mechanical inoculation, but the virus was not detected in them until 17 months after inoculation, when a mild mosaic appeared. NMV infected twenty-eight of fifty-three inoculated plant species; only five (Nicotiana clevelandii, Gomphrena globosa, Medicago sativa, Trifolium campestre and T. incarnatum) were infected systemically, and NMV was cultured in these and assayed in Chenopodium amaranticolor and Tetragonia expansa. The virus was not transmitted to and from G. globosa or N. clevelandii by three aphid species, or through the seeds of Narcissus, G. globosa and N. clevelandii but was transmitted by handling. G. globosa sap was infective at a dilution of 10 -5 but not at 10-6, when heated for 10 min. at 70° C. but not at 75° C, and after 12 weeks at 18° C, or 36 weeks at 0–4° C. NMV withstood freezing in infected leaves and sap, and purified preparations and freeze-dried sap remained infective for over 2 years. NMV was precipitated without inactivation by ammonium sulphate (313 g./l.) but was better purified by differential centrifugation of phosphate-buffer extracts treated with n-butanol. Such virus preparations from G. globosa, N. clevelandii, C. amaranticolor and T. expansa were highly infective, serologically active, produced a specific light-scattering zone when centrifuged in density-gradients and contained numerous unaggregated particles with a commonest length of 548–568 mμ. Antisera prepared in rabbits had precipitin tube titres of 1/4096. NMV was detected in three experimental hosts but not in narcissus sap. Unlike some viruses with elongated particles, NMV precipitates with antiserum in agar-gel. Purified preparations reacted with antiserum to a Dutch isolate of NMV but not with antisera to seven other viruses having similar particles and in vitro properties, or to narcissus yellow stripe virus.  相似文献   

2.
Spartina anglica is an exotic perennial grass that can rapidly colonise the intertidal zone of temperate estuaries and lagoons. Consequently, there is considerable concern about its impact on estuarine flora and fauna. This study provides the first investigation of ecological impacts by S. anglica in Australia. The objective was to investigate the impacts of S. anglica on benthic macroinvertebrate communities inhabiting mudflat and native saltmarsh habitats at Little Swanport estuary, Tasmania. The null hypothesis that species richness and species abundance of benthic macroinvertebrates in exotic S. anglica marsh does not differ from adjacent native saltmarsh and mudflat habitats was tested. Eighteen species and 3716 macroinvertebrates were collected from 60 intertidal core samples in three habitats. Species richness, total abundance of invertebrates, crustacean abundance and mollusc abundance of mudflat communities were significantly (P < 0.05) lower when compared to those inhabiting adjacent S. anglica marsh and native saltmarsh. However, species richness and total abundance of invertebrates of native saltmarsh and S. anglica marsh did not differ significantly. Ordination of macroinvertebrate data clearly separated mudflat sites from vegetated sites but showed remarkable similarity between exotic and native vegetated sites.  相似文献   

3.
Tephrosia symptomless virus (TSV), isolated from Tephrosia villosa, is widely distributed in coastal districts of Kenya. The virus was readily transmitted by inoculation of sap, but not by Aphis craccivora or Apion sp. (Curculionidae) or through soil. Host range was very restricted and it infected only 10 of 70 species tested in one of nine plant families; susceptible species were confined to five genera within the Papilionaceae. The virus was cultured, propagated and assayed in soybean. TSV remained infective after 10 min at 85°C, 3 wk at 20°C and 26 wk at -12°C; crude infective sap of Glycine max retained infectivity when diluted 10-6 but not 10-7. Virus was purified from systemically infected soybean by clarifying sap extracted in 0.06 m phosphate buffer containing 0.001 m EDTA and 0.1% thioglycollic acid (pH 7.5) with equal volumes of 1:1 n-butanol/chloroform followed by two cycles of differential and one of sucrose density gradient centrifugation. Purified preparations contained c. 33 nm isometric particles. TSV contained RNA and one protein of molecular weight 1.53. 106 and c. 42 000, respectively. Analytical centrifugation indicated a single component with a sedimentation coefficient (s.20, w) of 127 S; in Cs2SO4 and CsCl isopycnic gradients a single virus band formed; buoyant density in CsCl was 1.361. TSV was not related serologically to any of 44 viruses in nine plant virus groups but it resembled the tombusviruses and other ungrouped viruses such as carnation mottle in some of its properties.  相似文献   

4.
Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum)   总被引:1,自引:0,他引:1  
Pepino mosaic virus (PepMV), a previously undescribed virus, was found in fields of pepino (Solanum muricatum) in the Canete valley in coastal Peru. PepMV was transmitted by inoculation of sap to 32 species from three families out of 47 species from nine families tested. It caused a yellow mosaic in young leaves of pepino and either a mild mosaic or symptomless infection in 12 wild potato species, five potato cultivars and potato clone USDA 41956 but S. stoloniferum and potato cultivars Merpata and Revolucion reacted with severe systemic necrotic symptoms. The virus was transmitted by plant contact but not by Myzus persicae. It was best propagated and assayed in Nicotiana glutinosa. Sap from infected N. glutinosa was infective after dilution to 10-1 but not 10-6, after 10 min at 65°C but not 70°C and after 3 months at 20°C. PepMV had filamentous particles with a normal length of 508 nm; the ends of some seemed damaged. Ultra-thin sections of infected leaves of N. glutinosa revealed many inclusions containing arrays of virus-like particles some of which were banded or whorled; small aggregates of virus-like particles were also common. The virus was purified by extracting sap from infected leaves in a solution containing 0·065 M disodium tetraborate, 0·435 M boric acid, 0·2% ascorbic acid and 0·2% sodium sulphite at pH 7·8, adding silver nitrate solution to the extract, and precipitating the virus with polyethylene glycol followed by two cycles of differential centrifugation. Particles of PepMV normally yielded two proteins with molecular weights of 26 600 and 23 200, but virus obtained from infective sap aged overnight yielded only the smaller protein suggesting that it was a product of degradation of the larger one. The virus is serologically related to two potexviruses, narcissus mosaic and cactus X and its properties are typical of the potexvirus group.  相似文献   

5.
A virus, now named peanut green mosaic virus (PGMV), was isolated from groundnut (Arachis hypogaea) in India and identified as a member of the potato virus Y group by electron microscopy, aphid transmission, and its chemical properties. It was sap transmissible to 16 species of the Leguminosae, Solanaceae, Chenopodiaceae, Aizoaceae and Pedaliaceae; Phaseolus vulgaris was a good local lesion host. PGMV remained infective in buffered groundnut leaf sap at dilutions of 10-3 after 3 to 4 days at 25 °C, or heating for 10 min to 55 °C but not 60 °C. PGMV was transmitted in the non-persistent manner by Aphis gossypii and Myzus persicae but was not seed-borne. Purified virus preparations contained flexuous filamentous particles c. 750 nm long which sedimented as a single component with a sedimentation coefficient (S°20w) of 171S, and contained a single polypeptide (mol. wt 34 500 daltons) and one nucleic acid species (mol. wt 3.25 × 106 daltons). PGMV is serologically unrelated to peanut mottle virus (PMV) and other viruses infecting leguminous crops. Infected leaves contained cylindrical, cytoplasmic inclusions.  相似文献   

6.
Abstract The aims of this work were to discover the distribution within the C4 grass Spartina anglica of a PEP carboxylase which is very unstable during and after extraction, and to determine whether this unstable form occurs in other members of the genus. In S. anglica, only the leaf contains an unstable PEP carboxylase. Within the leaf only the major one of two isoenzymes is unstable, and this is located in the mesophyll cells. The unstable isoenzyme is inactivated during extraction and storage unless protected by bovine serum albumin or Triton X-100, and is inactivated in assay mixtures at optimum pH in the absence of PEP. Evidence is presented that inactivation is not due to degradation or inhibition during extraction and storage. The enzyme from leaves of Spartina species taxonomically closely related to S. anglica is also very unstable during and after extraction, but that from less closely related species is much more stable.  相似文献   

7.
An isolate of Australian lucerne latent virus (ALLV) from lucerne in New Zealand was mechanically transmitted to a few herbaceous hosts. It induced diagnostic symptoms in several species of the Chenopodiaceae, but was symptomless in most other hosts including lucerne and Trifolium subterraneum. It was seed transmitted in lucerne. When assayed to Chenopodium quinoa, infective C. quinoa sap lost infectivity after diluting to 10-4, heating for 10 min at 55°C and storage for 4 days at 4°C. ALLV was purified from infected C. quinoa or pea plants by extracting sap in 0.1 m borate buffer (pH 7) containing 0.2% 2-mercaptoethanol and clarifying with 15% bentonite suspension, high and low speed centrifugation and sucrose density gradient centrifugation. Purified virus preparations contained isometric particles about 25 nm in diameter and sedimented as three virus components with sedimentation coefficients (s20-w0) of 56 S, 128 S and 133 S. The 56 S component appeared to consist of nucleic acid-free protein shells. Polyacrylamide gel electrophoresis of virus preparations showed that ALLV contained a single protein species of mol. wt 55 000 and two RNA species of mol. wt 2.1 × 106 and 2.4 × 106. An antiserum to ALLV had an homologous titre of 1/256 to purified virus but failed to detect ALLV in infective sap of C. quinoa, pea or lucerne. Purified ALLV failed to react to antisera to 28 distinct isometric plant viruses including those to 10 nepoviruses.  相似文献   

8.
Host range and some properties of potato mop-top virus   总被引:2,自引:0,他引:2  
Potato mop-top virus (PMTV) was transmitted by inoculation of sap to twenty-six species in the Solanaceae or Chenopodiaceae and to Tetragonia expansa; species in eleven other plant families were not infected. The virus was cultured in inoculated leaves of Nicotiana tabacum cv. Xanthi-nc or in N. debneyi. Diagnostic local lesions were produced in Chenopodium amaranticolor. In winter, ten solanaceous species were slowly invaded systemically but the first leaves infected were those immediately above inoculated leaves. When transmitted to Arran Pilot potato by the vector Spongospora subterranea, PMTV induced all the main types of shoot and tuber symptoms found in naturally infected plants. Isolates of PMTV from different sources differed considerably in virulence. PMTV-containing tobacco sap lost infectivity when heated for 10 min at 80 °C, diluted to 10-4, or stored at 20 °C for 14 weeks. Infectivity was partially stabilized by 0·02% sodium azide. When sap was centrifuged for 10 min at 8000 g, infectivity was mainly in the sediment. Infective sap contained straight rod-shaped particles about 20 nm wide, with lengths up to 900 nm and crossbands at intervals of 2·5 nm. Many of the particles were aggregated side-to-side, and the ends of most seemed damaged. The slight infectivity of phenol-treated leaf extracts was abolished by pancreatic ribonuclease. The present cryptogram of PMTV is R/*:*/*:E/E:S/Fu.  相似文献   

9.
Some properties of cocksfoot mottle virus   总被引:4,自引:0,他引:4  
Cocksfoot mottle virus (CFMV) was transmitted by manual inoculation of sap to cocksfoot (Dactylis glomerata L.), wheat, oats and barley, but not to nineteen other monocotyledonous and thirteen dicotyledonous plant species. The virus was also transmitted by cereal leaf beetles (Lema melanopa L.). Adult beetles infected plants more frequently than larvae, and remained infective for up to 2 weeks after they had fed on infected plants. Seed from infected cocksfoot and oat plants produced virus-free seedlings. The infectivity of sap was lost during 10 min. at 65° C., and 2 weeks at 20° C., but survived many months at — 15° C. Purified virus preparations, made by various methods, contained numerous nearly spherical particles, about 30 mμ in diameter. In electron micrographs some of the particles were penetrated by negative stain though most appeared intact. However, all the particles migrated together in a centrifugal (sedimentation coefficient = 118 S) or electrophoretic field. The ultraviolet absorption spectrum, and the phosphorus and nitrogen contents of the virus preparations, were typical of a nucleoprotein containing about 25 % nucleic acid. Serological tests failed to show any relationship between CFMV and eleven other viruses with particles of similar shape and size.  相似文献   

10.
Cowpea mild mottle virus (CMMV), a previously undescribed virus widespread in cowpeas (Vigna unguiculata) in the Eastern Region of Ghana, was seed-borne in V. unguiculata, Phaseolus vulgaris and Glycine max, but was not transmitted by twelve aphid species including Aphis craccivora, A. fabae, Acyrthosiphon pisum and Myzus persicae. CMMV was transmitted by inoculation of sap to eleven of seventeen members of the Papilionaceae causing very severe diseases in G. max and Arachis hypogaea, and to ten of fifty-one species within five of nineteen other families; it was best propagated in G. max and Nicotiana clevelandii, and assayed in Chenopodium quinoa. Sap from systemically infected G. max was infective after dilution to 10-3 but not 10-4, after 10 min at 65 °C but not at 70 °C, or after 4 days at 18 °C or 16 days at 2 °C. Lyophilized sap was infective after 3 years in vacuo. CMMV has straight to slightly flexuous, fragile filamentous particles, c. 13 × 650 nm which, in sap, are occasionally surrounded by a loose external spiral. About 5 mg of purified virus was obtained from 1 kg of leaf tissue of G. max or N. clevelandii by clarifying leaf extracts in 0.02 m borate buffer (pH 9.5) with chloroform, followed by two or three cycles of differential centrifugation, and density gradient centrifugation. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 5 % nucleic acid, contained numerous particles without external spirals, which sedimented as a single component with a sedimentation coefficient (s°20, w) of 165 × 4S, and contained a single polypeptide species with a molecular weight of 32000–33000. CMMV showed a distant serological relationship to carnation latent virus, but not to ten other morphologically similar viruses; it thus seems to be a distinct member of the carlavirus group, and has the cryptogram: */*:*/(5):E/E:S/*.  相似文献   

11.
East African strains of cowpea aphid-borne mosaic virus   总被引:1,自引:0,他引:1  
Cowpea aphid-borne mosaic virus (CAMV) was isolated for the first time in East Africa where three distinct strains, type, veinbanding and mild, were differentiated by host range and serology. The three strains infected 17/38, 18/37 and 10/35 legume species, and 11/21, 7/21 and 3/19 non-legume species, respectively. The viruses were propagated in cowpea and assayed in Chenopodium amaranticolor. Isolates of all three strains had similar in vitro properties: dilution end point between 10-3 and 10-4; thermal inactivation point between 56 and 58 °C; longevity in vitro between 2 and 3 days. Infectivity of sap from frozen leaves was high after 4 wk but much less after 7 wk; infectivity was largely precipitated by 50% acetone but inactivated by 50% ethanol. High yields of virus were consistently obtained from cowpea by extracting systemically infected leaves in 0.5 m sodium citrate containing 1% mercaptoethanol (pH 8.1), and clarifying with 8.5 ml n-butanol/100 ml sap. Virus preparations contained numerous unaggregated and aggregated virus particles c. 750 nm long and contained components with sedimentation coefficients (s°20, w) of 150S and 175S (presumably unaggregated and aggregated particles, respectively). CAMV is serologically distantly related to bean common mosaic virus, but not to bean yellow mosaic or eight other morphologically similar viruses. It is a typical but distinct member of the potato virus Y group.  相似文献   

12.
Host range, purification and properties of potato virus T   总被引:2,自引:0,他引:2  
Potato virus T (PVT) infected nine species of tuber-bearing Solanum, most of them symptomlessly, and as a rule was transmitted through the tubers to progeny plants: two genotypes of S. tuberosum ssp. andigena were not infected. The virus was also transmitted by inoculation with sap to 37 other species in eight plant families. Chenopodium amaranticolor is useful as an indicator host, C quinoa as a source of virus for purification, and Phaseolus vulgaris as a local-lesion assay host; the systemic symptoms in Datura stramonium, Nicotiana debneyi and in these three species are useful for diagnosis. Attempts to transmit PVT by aphids failed, but the virus was transmitted through seed to progeny seedlings of four solanaceous species, and from pollen to seed of S. demissum. PVT was purified by clarifying sap with n-butanol or bentonite, followed by precipitation with polyethylene glycol, differential centrifugation and sedimentation in a sucrose density gradient. Purified preparations had an E260/E280 ratio of 1.18 and contained a single infective component with a sedimentation coefficient of 99 S. This component consisted of flexuous filamentous particles of about 640 times 12 nm that showed a characteristic substructure when stained with uranyl acetate. The virus particles contained a single species of infective single-stranded RNA, of molecular weight 2–2 times 106 daltons, and a single species of polypeptide of molecular weight about 27 000 daltons. PVT is serologically related to apple stem grooving virus but not to four other common potato viruses with flexuous filamentous particles. Apple stem grooving virus and PVT cause similar symptoms in several hosts, but also differ somewhat in host range and symptomatology. Apple stem grooving virus did not infect potato, caused additional symptoms in C. quinoa also infected with PVT, and its particles did not show the structural features specific to PVT. The two viruses are considered to be distinct. The cryptogram of PVT is R/1:2–2/(5): E/E: S/C.  相似文献   

13.
A sap-transmissible virus obtained from cassava with a green mottle disease occurring at Choiseul, Solomon Islands, was transmitted to 30 species in 12 plant families and was readily seed-borne in Nicotiana clevelandii. In cassava plants infected by inoculation with sap, the first leaves to be infected systemically developed a mottle with some necrosis whereas leaves produced subsequently were symptomless but contained the virus. Most other species developed chlorotic or necrotic local lesions and systemic mottle or necrosis. This was followed, in several species, by production of small symptomless virus-containing leaves. The virus was cultured in N. clevelandii; Chenopodium quinoa was used for local-lesion assays. Leaf extracts from infected N. clevelandii were infective after dilution to 10–5 but usually not at 10–6, after heating for 10 min at 60°C but not at 65°C, and after storage at 20°C for at least 12 days. The virus has isometric particles of 26 nm diameter which sediment as three components, all containing a protein of mol. wt c. 53000. The two fastest sedimenting components respectively contain single-stranded RNA of mol. wt, estimated after glyoxylation, c. 2.9 × 106 and 2.3 × 106. Both RNA species are needed for infection of plants. In tests with antiserum prepared to purified virus particles, the virus was detected in cassava and N. clevelandii by gel-diffusion precipitin tests, by immunosorbent electron microscopy and by ELISA. Despite its similarity to nepoviruses, the virus did not react with antisera to 18 members of the group. It was named cassava green mottle virus and is considered to be a previously undescribed nepovirus.  相似文献   

14.
Host range, properties and purification of raspberry bushy dwarf virus   总被引:3,自引:0,他引:3  
Raspberry bushy dwarf virus (RBDV) was found in all plants of Lloyd George raspberry with bushy dwarf disease and occurred occasionally in plants of some other cultivars. It was transmitted by inoculation of sap to fifty-five other species in twelve families of flowering plants and infected most of them symptomlessly. It caused systemic symptoms in some species of Amaranthaceae, Chenopodiaceae and Cucurbitaceae, and necrotic local lesions in some Leguminosae. It did not induce bushy dwarf disease when returned to Lloyd George raspberry. Chenopodium quinoa was used for propagating the virus and Vigna cylindrica for local lesion assay. In C. quinoa sap, RBDV lost infectivity when diluted 10-4, heated for 10 min at 65 °C or stored for 4 days at 22 °C. Preparations made by twice precipitating the virus at pH 4·8 and resuspending it at pH 7·0, followed by ultracentrifugation and exclusion chromatography in columns of 2 % agarose beads, contained isometric particles about 33 nm in diameter, which sedimented as two components, with sedimentation coefficients of 111 and 116S. Only a few particles, all of them disrupted, were seen in preparations mounted in phosphotungstate, but the particles were well preserved in uranyl formate provided that they were first dispersed in a saxlt such as MgCl2 instead of distilled water. Many particles were oval in outline as though distorted during drying. No serological relationship was detected between RBDV and twenty-four other isometric viruses nor between RBDV and the filamentous virus apple chlorotic leafspot, to which it was previously thought to be related. An isolate of loganberry degeneration virus was serologically indistinguishable from RBDV.  相似文献   

15.
A mechanically transmissible soil-borne virus causing peanut clump disease in Upper Volta is described. It infected mainly species of Chenopodia-ceae and was propagated in Chenopodium amaranticolor. Infectivity was lost from sap of C. amaranticolor after 10 min at 64 °C, and after dilution to 10-5 but not io-4. A purification procedure is described. The particles are rod-shaped and of two predominant lengths, 190 and 245 nm. The virus is not serologically related to tobacco rattle, pea early-browning, or soil-borne wheat mosaic viruses, or to a virus associated with a rhizomania-like disease of beet.  相似文献   

16.
A virus with isometric particles c. 26–28 nm in diameter isolated from naturally infected lucerne (Medicago sativa) in Australia and reported there to be a strain of lucerne Australian latent virus (LALV), is shown to be a distinct virus. The virus, called lucerne Australian symptomless (LASV), was mechanically transmitted to 10 of 22 plant species inoculated, but only induced symptoms in three Chenopodium species and Gomphrena globosa. Virus particles occurred in relatively low concentrations in plant sap, and the virus could not be reliably maintained in culture by serial transmission to plants during winter (October-April). During the summer, sap of infected C. quinoa remained infective after diluting 10-2 but not 10-3, after heating for 10 min at 50 but not 55 oC and after storage for 24 days (the longest period tested) at 20, 4 and -15 oC. LASV was seed-borne to 6% of C. quinoa seedlings. Partially purified preparations of virus particles contained one nucleoprotein component with a sedimentation coefficient of c. BOS. Particles contained two polypeptide species of estimated mol. wts 26 000 and 40 000, and two ssRNA species which, when denatured in glyoxal, had apparent mol. wts of 2–5 times 106 and 1–4 times 106. The infectivity of virus RNA was abolished by incubation with proteinase K. Purified particles of LASV reacted with homologous antiserum (gel diffusion titre 1:256) but not with antiserum to LALV or to 13 other plant viruses with isometric particles including arracacha B (AVB), broad bean wilt, rubus Chinese seed-borne (RCSV) and strawberry latent ringspot (SLRV) viruses, and five comoviruses. These properties distinguish LASV from LALV and from all recognised nepoviruses and comoviruses. Its closest affinities are with SLRV, RCSV and possibly AVB; these viruses may comprise a distinct virus group or nepovirus subgroup.  相似文献   

17.
Barley yellow striate mosaic virus (BYSMV) was inoculated by its planthopper vector Laodelphax striatellus (Homoptera, Delphacidae) to 44 species of Gramineae, 26 of which in eight tribes were infected. The virus was not transmitted through wheat seed nor did it infect five dicotyledonous hosts of other rhabdoviruses. The most susceptible species were in the tribes Festuceae and Hordeae. Barley, Bromus spp., oats, Phalaris canariensis, Setaria italica, Sorghum spp., and sweet corn cv. Golden were diagnostic hosts. Electron microscopy of crude sap was also a sensitive diagnostic method. Properties of BYSMV were determined by injecting L. striatellus with crude sap from infected barley. Sap was infectious after 10 min at 50–55 °C but not after 10 min at 60 °C, when diluted with buffer to 10--2 but not to 10--3, when stored for 2 but not 4 days at 5 °C or when kept for 1 but not 2 days at 22 °C. The planthopper Javesella pellucida was an experimental vector of BYSMV but the virus was not transmitted by the leafhoppers Macrosteles sexnotatus or Psammotettix striatus (Homoptera, Cicadellidae). The latent period of BYSMV in L. striatellus was most commonly 15 or 16 days (minimum, 9 days; maximum, 29 days). The minimum acquisition access period for transmission was between 1 h and 5 h, and the minimum inoculation feeding time was 15 min. After 24 h and 8 day acquisition feeds, 30.4% and 42.8% respectively of L. striatellus transmitted BYSMV. When transferred daily, infective hoppers transmitted virus intermittently. The maximum retention of infectivity by L. striatellus was 36 days. Two of five infective females transmitted BYSMV transovarially. Larvae became infective in the second wk after hatching and transmitted for up to 3 wk.  相似文献   

18.
Garlic yellow streak virus, a potyvirus infecting garlic in New Zealand   总被引:1,自引:0,他引:1  
In New Zealand, all garlic (Allium sativum) plants tested were infected by a virus with flexuous filamentous particles 700–800 nm long. This virus, called garlic yellow streak virus (GYSV), infected only two of 12 species tested and was transmitted to garlic by the aphid Myzus persicae in a non-persistent manner. In garlic sap, GYSV was infective at a dilution of 10-4 but not 10-3, after heating for 10 min at 60°C but not 65°C, and after 2 days but not 3 days at 25°C. The yield of virus, purified from naturally infected garlic, was 3–4 mg/kg fresh leaf. Preparations had A260/A280= 1.28 and Aman/Amin= 1.08. The virus particles had a sedimentation coefficient of 149S and a buoyant density in CsCl of 1.334 g/cm3. Mol. wt estimates for the virus nucleic acid were 2.95 × 106 by electrophoresis in polyacrylamide gels and 3.46 × 106 from the sedimentation coefficient (41.4S) in linear-log sucrose density gradients. Two polypeptides were detected in virus preparations; one (mol. wt 30 500) was possibly a breakdown product of the other (mol. wt 33 000). GYSV was serologically distantly related to onion yellow dwarf and leek yellow stripe viruses but was considered to be a separate virus because it differed from them in host range.  相似文献   

19.
Photosynthetic rates, the activities of key enzymes associated with the C4 cycle and ribulose-1,5-bisphosphate carboxylase (RuBPCase), and the levels of metabolites involved in the C4 cycle were compared between the two phosphoenolpyruvate carboxykinase (PCK) type C4 species Spartina anglica, which is cold-tolerant, and Zoysia japonica, which is cold-sensitive, during exposure to low temperature. Plants of both species grown outside in summer were placed in a growth chamber at 27/20 °C day/night temperatures. After 1 week, plants were exposed to 20/17 °C for 1 week and then to 10/7 °C for 2 weeks. Photosynthetic rates in Z. japonica decreased progressively to about 25% during the chilling treatments. In contrast, S. anglica exhibited a 43% increase in photosynthetic rates after exposure to 20 °C for 1 week, which remained relatively constant thereafter. Consistent with these observations, most of the C4 enzymes and RuBPCase in Z. japonica declined. Phosphoenolpyruvate carboxylase (PEPC) and PCK activities declined particularly drastically during the treatments. However, the activities of these enzymes in S. anglica showed either a slight increase or decrease upon a mild cold treatment, and remained relatively constant during further chilling treatments. There was a sharp decline in phosphoenolpyruvate in Z. japonica after exposure to 10 °C. On the other hand, metabolite levels in S. anglica were largely unaffected by the chilling treatments. These results suggest that the drastic declines of both PEPC and PCK activities may be important limiting factors responsible for cold sensitivity in C4 photosynthesis of Z. japonica.  相似文献   

20.
An isolate of artichoke latent virus (ALV-I) obtained from a symptomless artichoke plant in Southern Italy was characterised and compared with ALV isolates from other countries. ALV occurs in California and throughout the western part of the Mediterranean basin but of Mediterranean countries east of Italy, it was found only in Israel and Turkey. ALV-I was readily transmissible by inoculation of sap to a moderate range of hosts, was transmitted in a non-persistent manner by Aphis fabae, Brachicaudus cardui and Myzus persicae, but was not seed transmitted. The virus has flexuous rod-shaped particles measuring c. 12 nm × 746 nm with a sedimentation coefficient of 145 S and a buoyant density of 1·31 g/cm3. The particles contain single stranded RNA with a mol. wt of 3 × 106 and protein composed of a single polypeptide species with a mol. wt of 33 000. Cylindrical cytoplasmic inclusions consisting of pinwheels and laminated aggregates were present in cells of naturally and artificially infected plants. ALV isolates from different geographical origin were indistinguishable from ALV-I biologically, morphologically, serologically and ultrastructurally. These properties place ALV in the Potyvirus group, but it was serologically unrelated to 12 other potyviruses 10 of which occur commonly in Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号