首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Dubaquié  H B Lowman 《Biochemistry》1999,38(20):6386-6396
The bioavailability of insulin-like growth factor I (IGF-I) in the serum and tissues is controlled by members of the IGF binding protein family (IGFBP). These proteins form high-affinity complexes with IGF-I and thereby either inhibit or potentiate its mitogenic and metabolic effects. Thus, understanding the IGF-IGFBP interaction at the molecular level is crucial for attempts to modulate IGF-I activity in vivo. We have systematically investigated the binding contribution of each IGF-I amino acid side chain toward IGFBP-1 and IGFBP-3, combining alanine-scanning mutagenesis and monovalent phage display. Surprisingly, most IGF-I residues could be substituted by alanines, resulting in less than 5-fold affinity losses for IGFBP-3. In contrast, binding of IGFBP-1 was more sensitive to alanine substitutions in IGF-I. The glutamate and phenylalanine at positions 3 and 49 were identified as major specificity determinants for IGFBP-1: the corresponding alanine mutations, E3A and F49A, selectively decreased IGFBP-1 binding by 34- and 100-fold, whereas IGFBP-3 affinity was not affected or reduced maximally 4-fold. No side chain specificity determinant was found for IGFBP-3. Instead, our results suggest that the N-terminal backbone region of IGF-I is important for binding to IGFBP-3. The fact that the functional binding epitopes on IGF-I are overlapping but distinct for both binding proteins may be exploited to design binding protein-specific IGF variants.  相似文献   

2.
We have previously shown that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of skeletal muscle cells in culture, and that these actions in L6A1 muscle cells may be modulated by three secreted IGF binding proteins (IGFBPs), IGFBP-4, -5, and -6. Since we found that the temporal expression pattern of IGFBP-4 and IGFBP-5 differed dramatically during the transition from proliferating myoblasts to differentiated myotubes, we undertook the current study to examine the effects of purified IGFBP-4 and IGFBP-5 on IGF- stimulated actions in L6A1 muscle cells. As has been shown for other cell types, we found that IGFBP-4 had only inhibitory actions, inhibiting IGF-I and IGF-II- stimulated proliferation and differentiation. In contrast, IGFBP-5 exhibited both inhibitory and stimulatory actions. When added in the presence of 30 ng/ml IGF-I, IGFBP-5 (250 ng/ml) inhibited all markers of the early proliferative response: the tyrosine phosphorylation of the cytoplasmic signaling molecules IRS-1 and Shc, the activation of the MAP kinases, ERK1 and 2, the elevation of c-fos mRNA, the early inhibition of the elevation in myogenin mRNA, and the increase in cell number. In contrast, IGFBP-5 stimulated all aspects of the myogenic response to IGF-I: the later rise in myogenin mRNA, the elevation of creatine kinase activity, and the fusion of myoblasts into myotubes. This dual response to IGFBP-5 was greatest when it was added at a molar ratio of IGFBP-5 to IGF-I of 2:1. In contrast, when IGFBP-5 was added in the presence of IGF-II, it inhibited both proliferation and differentiation. Neither IGFBP had any effect when added in the presence of R3 IGF-I, an analog with substantially reduced affinity for IGFBPs. Our results suggest that the role of IGFBP-4 is mainly to sequester excess IGFs, and thus inhibit all actions. IGFBP-5, however, is capable of eliciting a dual response, possibly due to its unique ability to associate with the cell membrane. J. Cell. Physiol. 177:47–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I.To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal effect on TS-1 binding to IAP. Further analysis showed that IGFBP-5 addition altered the ability of TS-1 to modulate the SHPS-1/IAP interaction. When the IGFBP-5 mutant that did not bind to IGF-I was incubated with TS-1 and IGF-I, it inhibited the capacity of TS-1 to enhance the IGF-I receptor phosphorylation and MAP kinase activation in response to IGF-I. In contrast, the IGFBP-5 mutant that did not bind to TS-1 had no effect on IGF-I stimulated IGF-I receptor phosphorylation or MAP kinase activation. These results indicate that IGFBP-5 inhibits the binding of TS-1 to IAP, and this results in an alteration of the ability of TS-1 to modulate the disruption of the IAP/SHPS-1 interaction which leads to attenuation of the ability of TS-1 to enhance cellular responsiveness to IGF-I.  相似文献   

4.
A novel cell growth inhibitor, IDF45 (inhibitory diffusible factor), was recently purified to apparent homogeneity. It is a bifunctional molecule: able to bind Insulin like growth factor (IGF) and to 100% inhibit DNA synthesis stimulated by serum in fibroblasts. It was of interest to verify whether other members of the IGF-binding protein (IGFBP) family show the same bifunctional growth inhibitory properties. In this paper we show that purified IGFBP-1 derived from amniotic fluid is a cell growth inhibitor. In chick embryo fibroblasts, it inhibited DNA synthesis stimulated by serum. However the stimulation was maximally 60% inhibited and half of the inhibition was observed with 100ng/ml IGFBP-1. So the specific activity of IGFBP-1 is lower than that of IDF45. IGFBP-1 also reversibly prevented the CEF growth. In the same cells IGFBP-1 inhibited DNA synthesis stimulated by IGF-I. We demonstrated that the same protein IGFBP-1 is able to inhibit DNA synthesis stimulated by serum and by IGF-I. The possibility that IGFBP-1 is a bifunctional molecule is discussed.  相似文献   

5.
We examined the distribution of insulin-like growth factor binding proteins (IGFBPs) in cultured neonatal mouse calvariae. IGFBP-3 and -4 were predominantly found in the conditioned medium. IGFBP-2 was partitioned between conditioned medium and bone and extracellular matrix (BECM), while intact (31-kDa) IGFBP-5 was most abundant in BECM extracts. After treatment with parathyroid hormone (PTH, 10−8 M) or prostaglandin E2 (PGE2, 10−6 M), immunoreactive IGFBP-5 accumulated in the conditioned medium in a 21-kDa form which did not bind IGF-I on Western ligand blots. PTH and PGE2 did not alter the level of steady-state IGFBP-5 mRNA, nor markedly stimulate IGFBP-5 synthesis in the calvariae, and thus accumulation of 21-kDa IGFBP-5 was largely due to release from BECM. This accumulation of truncated IGFBP-5 in the conditioned medium was not dependent on osteoclastic bone resorption, since it was not blocked by calcitonin or a bisphosphonate which inhibited PTH- and PGE2-stimulated 45Ca-release. The conditioned medium from PTH- or PGE2-treated cultures degraded recombinant human IGFBP-5 into lower molecular weight fragments. Addition of IGF-I at 10−8 M into the culture resulted in accumulation of native 31-kDa IGFBP-5. However, even in the presence of IGF-I, the native IGFBP-5 was degraded and the 21-kDa product accumulated in the culture medium. These results suggested a possible proteolytic mechanism for 21-kDa IGFBP-5 accumulation, responsive to PTH and PGE2. Aprotinin, leupeptin, cystatin, and bestatin did not inhibit the effects of PTH and PGE2 in the cultures. The localization of IGFBP-5 in BECM and its release and proteolysis induced by PTH and PGE2 could play a role in the local regulation of bone metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

7.
Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 +/- 0.22 and 5.22 +/- 0.39 vs. 3.99 +/- 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 +/- 65 and 1,910 +/- 115 vs. 1,590 +/- 67 mmol. l(-1). min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-alpha, or peroxisome proliferator-activated receptor-gamma mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.  相似文献   

8.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
IGFBP-3 proteolysis clears IGFBP-3 from body fluids and increases IGF bioavailability. As shown here, native human IGFBP-3 was cleaved by proteases in media conditioned by hamster and insect cells. This proteolysis was less pronounced for IGFBP-3 containing a mutated heparin binding domain, and was prevented by purifying IGFBP-3 on an IGF-I affinity column in the presence of 2 M sodium chloride, suggesting that the responsible protease(s) binds the IGFBP-3 heparin binding domain. To determine if any human proteases act this way, we first studied plasma prekallikrein since it can copurify with IGFBP-3, and found: 1) [125]IGFBP-3 binds to prekallikrein immobilized either on nitrocellulose or on immunocapture plates; 2) the IGFBP-3 heparin binding domain participates in forming the IGFBP-3/prekallikrein complex; 3) the binary IGFBP-3/prekallikrein complex can bind IGF-I to form a ternary complex; and 4) activation of prekallikrein to alpha-kallikrein by Factor XIIa resulted in proteolysis of bound IGFBP-3. This work suggests: 1) cleavage of IGFBP-3 by a protease may be aided by the ability of the protease zymogen to directly bind the IGFBP-3 heparin binding domain; and 2) direct binding of protease zymogens to IGFBP-3 may explain some instances where IGFBP-3 is preferentially proteolyzed in the presence of other IGFBPs.  相似文献   

10.
11.
Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased β-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and β-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.  相似文献   

12.
Production of insulin-like growth factor-binding protein-1 (IGFBP-1) by the liver is efficiently inhibited by insulin both in vivo and in vitro. Consequently, serum IGFBP-1 concentration reflects insulin bioactivity in portal vein. Sex hormone-binding globulin (SHBG) is another insulin-regulated liver-derived protein that has appeared promising in detecting individuals with portal hyperinsulinemia. We compared the regulation of IGFBP-1 and SHBG production by insulin and insulin-like growth factors (IGF-I and IGF-II) in human hepatoma cell cultures. Insulin equipotently inhibited IGFBP-1 and SHBG production, with maximal decrease in culture medium concentrations being about 35% for both proteins during 48 h of culture in serum-free medium. IGF-I and IGF-II also inhibited the IGFBP-1 and SHBG levels. We conclude that IGFBP-1 and SHBG are equally sensitive to ambient insulin concentrations in human hepatoma cell cultures, and the production of both proteins is also attenuated by the IGFs.  相似文献   

13.
Insulin-like growth factor binding proteins (IGFBPs) are secreted by several cell types and can modify IGF actions. Mandin-Darby Bovine Kidney (MDBK) cells have been shown to secrete a 34,000 Da form of IGF binding protein whose N-terminal sequence is similar to a form of IGFBP purified from rat BRL-3A cells that has recently been named IGFBP-2. These studies report the complete amino acid sequence of bovine IGFBP-2 and compare its functional properties with human IGFBP-1. The protein is 81% identical to rat IGFBP-2. When compared with both rat IGFBP-2 and human IGFBP-1, the positions of all 18 cysteine residues are conserved. Similarly an RGD sequence is present near the carboxyl terminus in both proteins. IGFBP-2 has a higher affinity for IGF-II than for IGF-I and its affinity for both forms of IGF is greater than for human IGFBP-1. Like IGFBP-1 the protein can enhance the DNA synthesis response of porcine aortic smooth muscle cells to IGF-I; however, IGFBP-2 was much less potent. The maximum potentiation of the IGF-mediated mitogenic response that could be achieved was approximately 42% that of IGFBP-1. This potentiation is dependent upon a factor contained in platelet poor plasma and if this factor is omitted from the incubation medium, IGFBP-2 inhibits DNA synthesis. The purification of IGFBP-2 will allow more detailed comparisons to be made between it and other forms of IGFBPs in physiologic test systems.  相似文献   

14.
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR.  相似文献   

15.
Insulin-like growth factors (IGFs) are key regulators of cell proliferation, differentiation and transformation, and are thus pivotal in cancer, especially breast, prostate and colon neoplasms. They are also important in many neurological and bone disorders. Their potent mitogenic and anti-apoptotic actions depend primarily on their availability to bind to the cell surface IGF-I receptor. In circulation and interstitial fluids, IGFs are largely unavailable as they are tightly associated with IGF-binding proteins (IGFBPs) and are released after IGFBP proteolysis. Here we report the 2.1 A crystal structure of the complex of IGF-I bound to the N-terminal IGF-binding domain of IGFBP-5 (mini-IGFBP-5), a prototype interaction for all N-terminal domains of the IGFBP family. The principal interactions in the complex comprise interlaced hydrophobic side chains that protrude from both IGF-I and the IGFBP-5 fragment and a surrounding network of polar interactions. A solvent-exposed hydrophobic patch is located on the IGF-I pole opposite to the mini-IGFBP-5 binding region and marks the IGF-I receptor binding site.  相似文献   

16.
The insulin-like growth factor-binding protein 4 (IGFBP-4), the most abundant IGF-binding protein produced by rodent smooth muscle cells (SMC), is degraded by specific protease(s) potentially releasing IGF-I for local bioactivity. IGFBP-4 protease(s) recognizes basic residues within the midregion of the molecule. We constructed a mutant IGFBP-4 with the cleavage domain substitution 119-KHMAKVRDRSKMK-133 to 119-AAMAAVADASAMA-133. Myc-tagged native and IGFBP-4.7A retained equivalent IGF-I binding affinity. Whereas native IGFBP-4 was cleaved by SMC-conditioned medium, IGFBP-4.7A was completely resistant to proteolysis. To explore the function of the protease-resistant IGFBP-4 in vivo, expression of the mutant and native proteins was targeted to SMC of transgenic mice by means of a smooth muscle alpha-actin promoter. Transgene expression was confined to SMC-rich tissues in all lines. Bladder and aortic immunoreactive IGFBP-4/transgene mRNA ratios in SMP8-BP4.7A mice were increased by 2- to 4-fold relative to SMP8-BP4 mice, indicating that the IGFBP-4.7A protein was stabilized in vivo. SMP8-BP4.7A mice had lower aortic, bladder, and stomach weight and intestinal length relative to SMP8-BP4 counterparts matched for protein expression by Western blotting. Thus, IGFBP-4.7A results in greater growth inhibition than equivalent levels of native IGFBP-4 in vivo, demonstrating a role for IGFBP-4 proteolysis in the regulation of IGF-I action.  相似文献   

17.
We have shown that human intestinal smooth muscle cells produce IGF-I and IGF binding protein-3 (IGFBP-3). Endogenous IGF-I acts in autocrine fashion to stimulate growth of these cells. IGFBP-3 inhibits the binding of IGF-I to its receptor and thereby inhibits IGF-I-stimulated growth. In several carcinoma cell lines and some normal cells, IGFBP-3 regulates growth independently of IGF-I. Two mechanisms for this effect have been identified: IGFBP-3 can directly activate transforming growth factor-beta (TGF-beta) receptors or it can undergo direct nuclear translocation. The aim of the present study was to determine whether IGFBP-3 acts independently of IGF-I and to characterize the mechanisms mediating this effect in human intestinal smooth muscle cells. The direct effects of IGFBP-3 were determined in the presence of an IGF-I receptor antagonist to eliminate its IGF-I-dependent effects. Affinity labeling of TGF-beta receptors (TGF-betaRI, TGF-betaRII, and TGF-betaRV) with 125I-labeled TGF-beta1 showed that IGFBP-3 displaced binding to TGF-betaRII and TGF-betaRV in a concentration-dependent fashion. IGFBP-3 stimulated TGF-betaRII-dependent serine phosphorylation (activation) of both TGF-betaRI and of its primary substrate, Smad2(Ser465/467). IGFBP-3 also caused IGF-I-independent inhibition of basal [3H]thymidine incorporation. The effects of IGFBP-3 on Smad2 phosphorylation and on smooth muscle cell proliferation were independent of TGF-beta1 and were abolished by transfection of Smad2 siRNA. Immunoneutralization of IGFBP-3 increased basal [3H]thymidine incorporation, implying that endogenous IGFBP-3 inhibits proliferation. We conclude that endogenous IGFBP-3 directly inhibits proliferation of human intestinal smooth muscle cells by activation of TGF-betaRI and Smad2, an effect that is independent of its effect on IGF-I-stimulated growth.  相似文献   

18.
The cellular microenvironment impacts how signals are transduced by cells and plays a key role in tissue homeostasis. Although pH is generally well regulated, there are a number of situations where acidosis occurs and our work addresses how low pH impacts cell association of insulin-like growth factor-I (IGF-I) in the presence of IGF binding protein-3 (IGFBP-3). We have previously shown that IGF-I cell binding was enhanced in the presence of IGFBP-3 at low pH and now show that this binding is IGFBP-mediated as it is inhibited by Y60L-IGF-I, a mutant with reduced affinity for the IGF receptor (IGF-IR), and unaffected by insulin, which binds but not IGFBPs. Using surface plasmon resonance (SPR), we show that direct binding between IGF-I and IGFBP-3 is pH sensitive. Despite this, the key step in the process appears to be IGFBP-3 cell surface association as Long-R(3)-IGF-I, a mutant with reduced affinity for IGFBPs, shows a similar increase in cell association at pH 5.8 in the presence of IGFBP-3 but does not exhibit pH-dependent binding by SPR. Further, analysis indicates a large increase in low-affinity binding sites for IGF-I in the presence of IGFBP-3 and an elimination of IGF-I enhanced binding when a non-cell associating mutant of IGFBP-3 is added in place of IGFBP-3. That the IGFBP-3-mediated binding localizes IGF-I away from IGF-IR is suggested by triton-solubility testing and indicates additional complexities to IGF-I regulation by IGFBP-3. Identifying the pH-dependent binding partner(s) for IGFBP-3 is a necessary next step in deciphering this process.  相似文献   

19.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

20.
BACKGROUND/AIMS: To investigate changes in free insulin-like growth factor I (IGF-I) and IGF-binding protein 1 (IGFBP-1) complexed IGF-I during human pregnancy. METHODS: Overnight fasting serum was obtained in a longitudinal design from 11 women with non-complicated pregnancy at gestation weeks 6-10, 16-20, 24-28 and 35-38 and, for comparison, 5 weeks post-partum. All samples were analyzed for total and free IGF-I and IGF-II, IGFBP-3 and IGFBP-3 proteolysis, total and non-phosphorylated (np-) IGFBP-1, and IGFBP-1 complexed IGF-I. RESULTS: Total IGF-I was increased in late pregnancy (week 35-38) (p < 0.001), whereas free IGF-I was significantly increased by 77% already at week 6-10 (p = 0.004) and by 140% (p = 0.002) at week 34-38, when compared to post-partum levels. At weeks 16-20 and 24-28, levels of free IGF-I were not significantly different from post-partum levels. Significant IGFBP-3 proteolysis was detectable from week 6-10 and throughout pregnancy (p < 0.05). Total and np-IGFBP-1 were significantly increased from 16-20 weeks of pregnancy (both p < 0.05) and IGFBP-1 complexed IGF-I was increased 2-fold from week 16-20 and throughout pregnancy (p < 0.05). However, the saturation of IGFBP-1 remained constant at 27-29% during the study. CONCLUSION: We found evidence of increased free IGF-I and increased IGF-I in binary complexes during pregnancy, possibly caused by IGFBP-3 proteolysis and decreased ternary complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号