首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endogenous protein activator (AF) responsible for the activation of the gastric H+,K+-ATPase system, identified recently as the biochemical mechanism for the transport of H+, has been purified to homogeneity and partially characterized. The purification procedure (at 0-4 degrees C) involves simultaneous concentration and dialysis of the cytosolic fraction from dog fundic cells under negative pressure, pH 4.8 precipitation and two consecutive gel filtration steps on sephacryl S-200 columns. The highly purified and active AF is a protein of 80 Kd consisting of two identical subunits of 40 Kd each. The AF not only stimulates the gastric H+,K+-ATPase activity but also greatly enhances the rate of ATPase dependent proton pumping inside gastric microsomal vesicles. The data clearly suggest an important regulatory role of the cytosolic AF in the gastric HCl secretory process.  相似文献   

2.
Norepinephrine added in vitro to nerve ending membranes from rat cerebral cortex stimulates the activity of (Na+, K+) adenosinetriphosphatase (ATPase) only in the presence of the soluble brain fraction. In its absence norepinephrine inhibits the enzyme. (Mg2+)ATPase also showed stimulation by norepinephrine in the presence of the soluble fraction, but of lesser magnitude. The activation of (Na+, K+)ATPase by norepinephrine is not reproduced by cyclic AMP and is not antagonized by either - or -adrenergic blocking agents. These results suggest that the stimulation caused by norepinephrine is a direct effect on the enzyme and is not mediated by cyclic AMP or adrenergic receptors.  相似文献   

3.
A method is described for purification of (Na+, K+)-ATPase which yielded approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 mumol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600-700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi, or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with gamma-32P-labelled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

4.
Studies of the effect of strophanthidin on H(+)-transporting ATPase, Ca(2+)-transporting ATPase and H+/K(+)-transporting ATPase activities are reported. Inhibition observations and kinetic results suggest the existence of a common digitalis aglycone binding site located on the extracellular surface of the enzyme, which is affected competitively by the binding of potassium to H(+)-transporting ATPase, Ca(2+)-transporting ATPase, as well as H+/K(+)-transporting ATPase and Na+/K(+)-transporting ATPase. This may lead to a better understanding of the mechanism of the pharmacological action of cardiac glycosides and imply the possibility that the positive inotropic effect may result from the inhibition of both Ca(2+)-transporting ATPase and Na+/K(+)-transporting ATPase.  相似文献   

5.
The (H+,K+)ATPase-enriched microsomal fraction prepared from hog gastric mucosa by sucrose density gradient centrifugation was effectively solubilized with Emulgen, with apparent preservation of the enzyme activity, and then the ATPase was highly purified by polyethylene glycol fractionation, and Blue Sepharose CL-6B and amino-hexyl Sepharose chromatographies. The purified enzyme showed a single band, with an apparent molecular mass of approximately 94 kDa, on SDS-PAGE, and exhibited both K+-ATPase and K+-stimulated-p-nitrophenyl phosphatase (pNPPase) activities. The optimum pH for the ATPase activity was 7.0. Amino acid analysis of the purified enzyme showed that it contains a large amount of hydrophobic amino acid (42%) and a small amount of glucosamine and galactosamine. The rabbit antibody monospecific for the ATPase, in the Ouchterlony double immunodiffusion and Western blotting tests, markedly inhibited both the K+-ATPase and K+-pNPPase activities.  相似文献   

6.
A procedure is described for preparation of highly active (Na+,K+)-ATPase from rat heart which has a specific activity of 200-600 mumol Pi/mg/h. The procedure is simple and can be applied to small amounts of heart muscle (approximately 1 g). The ATPase activity was more than 90% sensitive to ouabain (at concentrations up to 1 mM). The ouabain sensitivity is biphasic with about 20% of the ATPase activity being inhibited at approximately 3 X 10(-7) M ouabain.  相似文献   

7.
8.
Modulation of gastric H+,K+-transporting ATPase function by sodium   总被引:3,自引:0,他引:3  
T K Ray  J Nandi 《FEBS letters》1985,185(1):24-28
Gastric H+,K+-ATPase activity is not affected by Na+ at pH 7.0 but is significantly stimulated by Na+ at pH 8.5. For the stimulation at the latter pH, the presence of both Na+ and K+ were essential. Contrary the H+,K+-ATPase, the associated K+-pNPPase was inhibited by Na+ at both pH values. Sodium competes with K+ for the K+-pNPPase reaction. Also, unlike the H+, K+-ATPase activity the ATPase-mediated transport of H+ within the gastric microsomal vesicles was inhibited by Na+. For the latter event only the extravesicular and not the intravesicular Na+ was effective. The data suggest that the K+-pNPPase activity does not represent the phosphatase step of the H+,K+-ATPase reaction. In addition, the observed inhibition of vesicular H+ uptake by Na+ appears to be due to the displacement by Na+ of a cytosolic (extravesicular) H+ site responsible for the vectorial translocation of H+.  相似文献   

9.
10.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

11.
A detailed comparative analysis of tryptophan fluorescence spectra of 'sodium' and 'potassium' forms of (Na+, K+)-activated ATPase was carried out. The 'potassium' form spectrum is shifted relative to that of the 'sodium' form by approximately 0.5-1 nm towards shorter wavelengths. The maximal amplitude of the difference spectrum for these forms makes up about 2% of maximal fluorescence intensity of any of the forms. The shape of the difference spectrum does not depend on the solution temperature or ionic strength. The spectral differences between the forms are reversible upon addition of a functionally opposite cation (K+ for 'sodium' form and vice versa) into the medium. The results suggest that if the differences in fluorescence spectra of the 'sodium' and 'potassium' forms of (Na+, K+)-ATPase resulted from the differences in the protein structure, they may be caused by an alteration in local environment of no more than one or two tryptophan residues.  相似文献   

12.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

13.
W J Ball 《Biochemistry》1984,23(10):2275-2281
Several hybridoma cell lines secreting antibodies specific to the membrane (Na+,K+)-dependent ATPase from lamb kidney medulla have been isolated by using the methods developed by Kohler and Milstein. One of these antibodies (designated M7-PB- E9 ) has been shown to be directed against a functional epitope or antigenic site of the catalytic (alpha) subunit of the enzyme. Although this antibody was raised to the "native" holoenzyme, it has a higher apparent affinity toward the isolated, delipidated, and inactive alpha subunit than toward the holoenzyme. This antibody shows a 10-fold faster initial rate of binding to the alpha subunit than to the holoenzyme. The antibody dissociation rates from both isolated alpha subunit and holoenzyme are similarly slow, and the binding can be considered a pseudoirreversible reaction. By binding at this site, the antibody, however, acts like a "partial competitive inhibitor" with respect to ATP and acts as an uncompetitive or mixed competitive inhibitor with respect to the Na+ and K+ dependence of ATPase hydrolysis. This antibody also does not alter the cooperativity at either the Na+ or the K+ sites. The antibody causes a partial inhibition of the Na+- and MgATP-dependent phosphoenzyme intermediate formation but has no effect on either ADP in equilibrium ATP exchange or the K+-stimulated dephosphorylation step. In addition, the K+-dependent p-nitrophenylphosphatase activity of the enzyme was not affected. In the presence of Mg2+, the antibody stimulates the rate of cardiac glycoside binding [( 3H]ouabain) to the (Na+,K+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
S Nakamura  E Racker 《Biochemistry》1984,23(2):385-389
The polypeptide antibiotic duramycin inhibited the (Na+,K+)-adenosinetriphosphatase purified from dog kidney. An analysis of its mode of action revealed that the formation of phosphoenzyme from Pi but not from ATP was inhibited. The rate of dephosphorylation of the phosphoenzyme formed from ATP was markedly reduced. In contrast to quercetin, duramycin did not inhibit K+-dependent p-nitrophenylphosphatase activity. The effect of duramycin was completely reversed by phospholipids.  相似文献   

15.
Summary Rabbit gastric secretion has the physiological peculiarity of being continuous and uninfluenced by food intake. In this respect, ultrastructural analysis of rabbit parietal cells has revealed morphofunctional features situated between states of rest and very active acid secretion. Our cytochemical study shows that Mg2+ ATPase and ADPase activities vary from cell to cell and can even be totally absent. These activities concern either microcanaliculi or laterobasal folds or both, but never tubulovesicles. Application of the technique of Mayahara to K+ pNPP, associated or not with inhibitors (ouabain, vanadate, N-ethyl-maleimide, sodium fluoride), enabled us to confirm the coexistence of H+, K+, ATPase and Na+, K+, ATPase activities in the rabbit and to determine that these activities concern basolateral folds, microcanaliculi, hyaloplasm and tubulovesicles. The global activity of K+, pNPPase varied considerably in intensity. The results of using inhibitors suggest that proton transport ceases completely in certain cells. The signs of functional alternation found in this study are in agreement with physiological data relative to this animal.  相似文献   

16.
17.
Y Kuriki  E Racker 《Biochemistry》1976,15(23):4951-4956
The bioflavonoid, quercetin, inhibited the (Na+, K+)adenosine triphosphatase purified from the electric organ of electric eel (Electrophorus electricus) or from lamb kidney. An analysis of its mode of action revealed that the formation of phosphoenzyme from Pi but not from ATP was inhibited. Quercetin increased the amount of ADP-sensitive phosphoenzyme (E1--P), indicating an inhibition of the conversion of E1--P to the ADP-insensitive form (E2--P). The rate of dephosphorylation of the phosphoenzyme formed from ATP was slowed by quercetin. These results suggest that quercetin inhibits the formation of E2--P from either Pi or E1-P as well as the hydrolysis of the phosphoenzyme. Its mode of action is therefore different from that of ouabain and other inhibitors of the Na+, K+)adenosine triphosphatase.  相似文献   

18.
Rabbit gastric secretion has the physiological peculiarity of being continuous and uninfluenced by food intake. In this respect, ultrastructural analysis of rabbit parietal cells has revealed morphofunctional features situated between states of rest and very active acid secretion. Our cytochemical study shows that Mg2+ ATPase and ADPase activities vary from cell to cell and can even be totally absent. These activities concern either microcanaliculi or laterobasal folds or both, but never tubulovesicles. Application of the technique of Mayahara to K+ pNPP, associated or not with inhibitors (ouabain, vanadate, N-ethyl-maleimide, sodium fluoride), enabled us to confirm the coexistence of H+, K+, ATPase and Na+, K+, ATPase activities in the rabbit and to determine that these activities concern basolateral folds, microcanaliculi, hyaloplasm and tubulovesicles. The global activity of K+, pNPPase varied considerably in intensity. The results of using inhibitors suggest that proton transport ceases completely in certain cells. The signs of functional alternation found in this study are in agreement with physiological data relative to this animal.  相似文献   

19.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

20.
The influence of H+ and K+ on the partial reactions and transport of gastric (H+ + K+)-ATPase was studied. Using transient kinetics, the effects and sidedness of effects of H+ and K+ on formation and breakdown of phosphoenzyme were determined in intact and lyophilized reconstituted vesicles in the absence and presence of gramicidin. Whereas increasing H+ concentrations on the ATP-binding face of the vesicles accelerates phosphorylation, increasing K+ concentrations inhibits phosphorylation. Increasing H+ on this side reduces K+ inhibition of the phosphorylation rate. At low ATP/K+ ratios, the phosphorylation step can become rate-limiting for steady state hydrolysis. Decreasing H+ accelerates dephosphorylation in the absence of K+. K+ on the internal or luminal face of the vesicles accelerates dephosphorylation, and this rate is reduced with increasing H+ concentrations. At low internal pH, K+-dependent dephosphorylation may become rate-limiting. H+ transport measurements using fluorescence quenching of acridine orange show that whereas internal K+ is required for H+ transport, external K+ inhibits the rate of formation of a pH gradient, and the inhibition is reduced by decreasing medium pH. The pH optimum for ATPase activity and transport correlated in the vesicles, and the K0.5 of K+ for transport correlated with data for intact parietal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号