首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototropins (phot1 and phot2) are autophosphorylating blue-light receptor kinases that mediate blue-light responses such as phototropism, chloroplast accumulation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Only phot2 induces the chloroplast avoidance response under strong blue light. The serine (Ser) residues of the kinase activation loop in phot1 are autophosphorylated by blue light, and autophosphorylation is essential for the phot1-mediated responses. However, the role of autophosphorylation in phot2 remains to be determined. In this study, we substituted the conserved residues of Ser-761 and Ser-763 with alanine (S761A S763A) in the phot2 activation loop and analyzed their function by investigating the phot2-mediated responses after the transformation of phot1 phot2 double mutant with this mutant phot2 gene. Transgenic plants expressing the mutant phot2 protein exhibited impaired responses in chloroplast movement, stomatal opening, phototropic bending, leaf flattening, and plant growth; and those expressing phot2 with S761D S763D mutations showed the normal responses. Substitution of both Ser-761 and Ser-763 with alanine in phot2 did not significantly affect the kinase activity in planta. From these results, we conclude that phosphorylation of Ser-761 and Ser-763 in the activation loop may be a common primary step for phot2-mediated responses.  相似文献   

2.
Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.  相似文献   

3.
Griebel T  Zeier J 《Plant physiology》2008,147(2):790-801
We have examined molecular and physiological principles underlying the light dependency of defense activation in Arabidopsis (Arabidopsis thaliana) plants challenged with the bacterial pathogen Pseudomonas syringae. Within a fixed light/dark cycle, plant defense responses and disease resistance significantly depend on the time of day when pathogen contact takes place. Morning and midday inoculations result in higher salicylic acid accumulation, faster expression of pathogenesis-related genes, and a more pronounced hypersensitive response than inoculations in the evening or at night. Rather than to the plants' circadian rhythm, this increased plant defense capability upon day inoculations is attributable to the availability of a prolonged light period during the early plant-pathogen interaction. Moreover, pathogen responses of Arabidopsis double mutants affected in light perception, i.e. cryptochrome1cryptochrome2 (cry1cry2), phototropin1phototropin2 (phot1phot2), and phytochromeAphytochromeB (phyAphyB) were assessed. Induction of defense responses by either avirulent or virulent P. syringae at inoculation sites is relatively robust in leaves of photoreceptor mutants, indicating little cross talk between local defense and light signaling. In addition, the blue-light receptor mutants cry1cry2 and phot1phot2 are both capable of establishing a full systemic acquired resistance (SAR) response. Induction of SAR and salicylic-acid-dependent systemic defense reactions, however, are compromised in phyAphyB mutants. Phytochrome regulation of SAR involves the essential SAR component FLAVIN-DEPENDENT MONOOXYGENASE1. Our findings highlight the importance of phytochrome photoperception during systemic rather than local resistance induction. The phytochrome system seems to accommodate the supply of light energy to the energetically costly increase in whole plant resistance.  相似文献   

4.
植物蓝光调节的反应主要有向光性、抑制幼茎伸长、叶绿体迁移、刺激气孔张开和调节基因表达等。蓝光反应的有效波长是蓝光和近紫外光(320—400am),故蓝光受体也叫蓝光/近紫外光受体。植物蓝光受体研究近年来取得较大进展。以拟南芥为例,已得到确认的受体至少有隐花色素(CRY1、2)和向光蛋白(phototropin)两大类。转基因拟南芥对蓝光、紫外光和绿光敏感,并发现CRY1是一个可溶性蛋白。CRY2编码一个核蛋白,蓝光在转录水平对该蛋白进行调节,它的作用是增加拟南芥对蓝光的敏感性。CRY1和CRY2共同介导了拟南芥植物的向光性。隐花色素的蛋白与辅基之间以非共价键连接,可以吸收蓝光和近紫外光。CRY1和CRY2蛋白之间,尤其是N端相似性很高。向光蛋白目前只发现PHOT1和PHO12两种,向光蛋白作为丝/苏氨酸激酶蓝光受体含有两个光氧化结构域(LOV)并参与了植物向光性叶绿体运动、气孔开放等。  相似文献   

5.
Phototropins (phot1 and phot2) are plant-specific blue light receptors for phototropism, chloroplast movement, leaf expansion, and stomatal opening. All these responses are thought to optimize photosynthesis by helping to capture light energy efficiently, reduce photodamage, and acquire CO2. However, experimental evidence for the promotion of plant growth through phototropins is lacking. Here, we report dramatic phototropin-dependent effects on plant growth. When plants of Arabidopsis thaliana wild type, the phot1 and phot2 mutants, and the phot1 phot2 double mutant were grown under red light, no significant growth differences were observed. However, if a very low intensity of blue light (0.1 micromol m(-2) s(-1)) was superimposed on red light, large increases in fresh weight up to threefold were found in those plants that carried functional PHOT1 genes. When the intensity of blue light was increased to 1 micromol m(-2) s(-1), the growth enhancement was also found in the phot1 single mutant, but not in the double mutant, indicating that phot2 mediated similar responses as phot1 with a lower sensitivity. The effects occurred under low photosynthetically active radiation in particular. The well-known physiological phototropin-mediated responses, including chloroplast movement, stomatal opening, and leaf expansion, in the different lines tested indicated an involvement of these responses in the blue light-induced growth enhancement. We conclude that phototropins promote plant growth by controlling and integrating a variety of responses that optimize photosynthetic performance under low photosynthetically active radiation in the natural environment.  相似文献   

6.
Phototropins (phot1 and phot2) are suggested to be multifunctional blue-light (BL) receptors mediating phototropism, chloroplast movement, stomatal opening, and leaf expansion. The Arabidpsis phot1 phot2 double mutant lacks all of these responses. To confirm the requirement of phototropins in BL responses, the Arabidopsis phot1 phot2 double mutant was transformed with PHOT1 cDNA and the phenotypic restoration was analysed in the transformants. It was found that all BL responses were restored, although differentially, by the transformation of the Arabidopsis phot1 phot2 double mutant with PHOT1 cDNA. The results showed that phot1 was an essential component for all these BL responses in planta, and that the cellular level of phot1 might determine the individual BL responses.  相似文献   

7.
Recent studies have shown that blue light-specific stomatal opening is reversed by green light and that far-red light can be used to probe phytochrome-dependent stomatal movements. Here, blue-green reversibility and far-red light were used to probe the stomatal responses of the npq1 mutant and the phot1 phot2 double mutant of Arabidopsis. In plants grown at 50 micromol m-2 s-1, red light (photosynthetic)-mediated opening in isolated stomata from wild type (WT) and both mutants saturated at 100 micromol m-2 s-1. Higher fluence rates caused stomatal closing, most likely due to photo-inhibition. Blue light-specific opening, probed by adding blue light (10 micromol m-2 s-1) to a 100 micromol m-2 s-1 red background, was found in WT, but not in npq1 or phot1 phot2 double mutant stomata. Under 50 micromol m-2 s-1 red light, 10 micromol m-2 s-1 blue light opened stomata in both WT and npq1 mutant stomata but not in the phot1 phot2 double mutant. In npq1, blue light-stimulated opening was reversed by far-red but not green light, indicating that npq1 has a phytochrome-mediated response and lacks a blue light-specific response. Stomata of the phot1 phot2 double mutant opened in response to 20 to 50 micromol m-2 s-1 blue light. This opening was green light reversible and far-red light insensitive, indicating that stomata of the phot1 phot2 double mutant have a detectable blue light-specific response.  相似文献   

8.
Stomatal opening exhibits two main peaks of activity in the visible range-a red peak, mediated by photosynthesis, and a blue peak, mediated by one or more blue light (BL) photoreceptors. In addition, a pronounced peak in the UV-B region has been characterized, as has a smaller UV-A peak. The BL-induced stomatal opening can be reversed by green light (GL). Here we report that UV-B-induced opening is also antagonized by GL. To determine whether UV-B is being absorbed by the BL photoreceptor or by a separate UV-B receptor, the UV-B responses of two different Arabidopsis mutants, npq1 and phot1/phot2, were tested. Both putative BL-photoreceptor mutants exhibited normal stomatal opening in response to UV-B, consistent with the existence of a separate UV-B photoreceptor. Moreover, GL failed to antagonize UV-B-induced stomatal opening in the phot1/phot2 double mutant and only partially antagonized UV-B opening in npq1. Thus, both phot1 and phot 2, as well as zeaxanthin, are required for the normal GL inhibition of UV-B. A model for a photoreceptor network that regulates stomatal opening is presented. Unlike the situation in guard cells, the UV-B bending response of Arabidopsis hypocotyls during phototropism appears to be mediated by phototropins.  相似文献   

9.
Phototropins 1 and 2: versatile plant blue-light receptors   总被引:11,自引:0,他引:11  
Blue and ultraviolet-A light regulate a wide range of responses in plants, including phototropism, chloroplast migration and stomatal opening. However, the photoreceptors for these light responses have been identified only recently. The phototropins (phot1 and phot2) represent a new class of receptor kinases that appear to be exclusive to plants. Recent genetic analysis has shown that phot1 and phot2 exhibit partially overlapping functions in mediating phototropism, chloroplast migration, and stomatal opening in Arabidopsis. Although significant progress has been made in understanding the early photochemical and biochemical events that follow phototropin excitation, the details of how this excitation activates such different responses remain to be elucidated.  相似文献   

10.
Phototropin 1 (phot1) and phot2, which are blue light receptor kinases, function in blue light-induced hypocotyl phototropism, chloroplast relocation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Previous studies have shown that the proteins RPT2 (for ROOT PHOTOTROPISM2) and NPH3 (for NONPHOTOTROPIC HYPOCOTYL3) transduce signals downstream of phototropins to induce the phototropic response. However, the involvement of RPT2 and NPH3 in stomatal opening and in chloroplast relocation mediated by phot1 and phot2 was unknown. Genetic analysis of the rpt2 mutant and of a series of double mutants indicates that RPT2 is involved in the phot1-induced phototropic response and stomatal opening but not in chloroplast relocation or phot2-induced movements. Biochemical analyses indicate that RPT2 is purified in the crude microsomal fraction, as well as phot1 and NPH3, and that RPT2 makes a complex with phot1 in vivo. On the other hand, NPH3 is not necessary for stomatal opening or chloroplast relocation. Thus, these results suggest that phot1 and phot2 choose different signal transducers to induce three responses: phototropic response of hypocotyl, stomatal opening, and chloroplast relocation.  相似文献   

11.
Higher plants use several classes of blue light receptors to modulate a wide variety of physiological responses. Among them, both the phototropins and members of the Zeitlupe (ZTL) family use light oxygen voltage (LOV) photosensory domains. In Arabidopsis, these families comprise phot1, phot2 and ZTL, LOV Kelch Protein 2 (LKP2), and Flavin-binding Kelch F-box1 (FKF1). It has now been convincingly shown that blue-light-induced autophosphorylation of the phot1 kinase domain is an essential step in signal transduction. Recent experiments also shed light on the partially distinct photosensory specificities of phot1 and phot2. Phototropin signaling branches rapidly following photoreceptor activation to mediate distinct responses such as chloroplast movements or phototropism. Light activation of the LOV domain in ZTL family members modulates their capacity to interact with GIGANTEA (GI) and their ubiquitin E3 ligase activity. A complex between GI and FKF1 is required to trigger the degradation of a repressor of CO (CONSTANS) expression and thus modulates flowering time. In contrast, light-regulated complex formation between ZTL and GI appears to limit the capacity of ZTL to degrade its targets, which are part of the circadian oscillator.  相似文献   

12.
A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.  相似文献   

13.
The 14-3-3 λ isoform is required for normal stomatal opening mediated by PHOT2 in Arabidopsis thaliana. Arabidopsis phototropin2 (PHOT2) interacts with the λ-isoform 14-3-3 protein both in yeast two-hybrid screening and in an in vitro pull-down assay. Further yeast two-hybrid analysis also showed that the PHOT2 C-terminal kinase domain was required for the interaction. Site-directed mutagenesis indicated that PHOT2 Ser-747 is essential for the yeast interaction. Phenotypic characterization of a loss-of-function 14-3-3 λ mutant in a phot1 mutant background showed that the 14-3-3 λ protein was necessary for normal PHOT2-mediated blue light-induced stomatal opening. PHOT2 Ser-747 was necessary for complementation of the blue light-activated stomatal response in a phot1 phot2 double mutant. The 14-3-3 λ mutant in the phot1 mutant background allowed normal phototropism and normal chloroplast accumulation and avoidance responses. It also showed normal stomatal opening mediated by PHOT1 in a phot2 mutant background. The 14-3-3 κ mutant had no effect on stomatal opening in response to blue light. Although the 14-3-3 λ mutant had no chloroplast movement phenotype, the 14-3-3 κ mutation caused a weaker avoidance response at an intermediate blue light intensity by altering the balance between the avoidance and accumulation responses. The results highlight the strict specificity of phototropin-mediated signal transduction pathways.  相似文献   

14.
15.
Phototropins 1 and 2 (phot1 and phot2) function as blue light (BL) photoreceptors for phototropism, chloroplast relocation, stomatal opening and leaf flattening in Arabidopsis thaliana. Phototropin consists of two functional domains, the N-terminal photosensory domain and the C-terminal Ser/Thr kinase domain. However, little is known about the signal transduction pathway that links the photoreceptors and the physiological responses downstream of BL perception. To understand the mechanisms by which phot2 initiates these responses, we transformed the phot1phot2 double mutant of Arabidopsis with constructs encoding translationally fused phot2:green fluorescent protein (P2G). P2G was fully functional for the phot2-specific physiological responses in these transgenic plants. It localized strongly to the plasma membrane and weakly to the cytoplasm in the dark. Upon illumination with BL, punctate P2G staining was formed within a few minutes in addition to the constitutive plasma membrane staining. This punctate distribution pattern matched well with that of the Golgi-localized KAM1DeltaC:mRFP. Brefeldin A (BFA), an inhibitor of vesicle trafficking, induced accumulation of P2G around the perinuclear region even in darkness, but the punctate pattern was not observed. After treatment of these cells with BL, P2G exhibited the punctate distribution pattern that matched with that of the Golgi marker. Hence, the light-dependent association of P2G with the Golgi apparatus was BFA-insensitive. A structure/function analysis indicated that the kinase domain was essential for the Golgi localization of phot2. The BL-induced Golgi localization of phot2 may be one of important signaling steps in the phot2 signal transduction pathway.  相似文献   

16.
Cellular and subcellular localization of phototropin 1   总被引:22,自引:0,他引:22       下载免费PDF全文
Sakamoto K  Briggs WR 《The Plant cell》2002,14(8):1723-1735
Phototropin 1 (phot1) is a Ser/Thr photoreceptor kinase that binds two molecules of flavin mononucleotide as its chromophores and undergoes autophosphorylation in response to blue light. Phot1 is plasma membrane associated and, as with phot2, has been shown to function as a photoreceptor for phototropism, blue light-induced chloroplast movement, and blue light-induced stomatal opening. Phot1 likely also plays a redundant role with phot2 in regulating the rate of leaf expansion. Understanding the mechanism(s) by which phot1 initiates these four different responses requires, at minimum, knowledge of where the photoreceptor is located. Therefore, we transformed a phot1 null mutant of Arabidopsis with a construct encoding translationally fused phot1-green fluorescent protein (GFP) under the control of the endogenous PHOT1 promoter and investigated its cellular and subcellular distribution. This PHOT1-GFP construct complements the mutant phenotype, restoring second positive curvature. Phot1 is expressed strongly in dividing and elongating cortical cells in the apical hook and in the root elongation zone in etiolated seedlings. It is localized evenly to the plasma membrane region in epidermal cells but is confined largely to the plasma membrane region of the transverse cell walls in the cortical cells of both root and hypocotyl. It is found at both apical and basal ends of these cortical cells. In light-grown plants, phot1-GFP is localized largely in the plasma membrane regions adjacent to apical and basal cell end walls in the elongating inflorescence stem, where the photoreceptor is expressed strongly in the vascular parenchyma and leaf vein parenchyma. Phot1 also is localized to the plasma membrane region of leaf epidermal cells, mesophyll cells, and guard cells, where its distribution is uniform. Although phot1 is localized consistently to the plasma membrane region in etiolated seedlings, a fraction becomes released to the cytoplasm in response to blue light. Possible relationships between observed phot1 distribution and the various physiological responses activated by blue light are discussed.  相似文献   

17.
The discovery of phototropins, photoreceptors for chloroplast responses in Arabidopsis thaliana, brought about renewed interest in these blue light-controlled movements. Recent progress in research on their mechanisms in higher plants is briefly summarized. Phototropins mediate phototropism, chloroplast relocations and stomatal movements. Their functions are partially overlapping, with phot1 active predominantly in weak light and phot2 active in strong light. The accumulation response of chloroplasts appears to be mediated by phot1 and phot2 whereas the avoidance response is controlled by phot2. The role of Ca2+ as a potential intracellular messenger has been discussed in view of the recently demonstrated blue light-induced transient increases in the cytosolic Ca2+ mediated differently by phot1 and phot2. Differential inhibition of accumulation and avoidance responses by wortmannin, the inhibitor of phosphoinositide-3 kinases, in Lemna trisulca points to an important role of these enzymes in the signal transduction. A new, multi-domain component controlling chloroplast positioning and movement, CHUP1, encodes an actin-binding protein in Arabidopsis.  相似文献   

18.
Chen X  Lin WH  Wang Y  Luan S  Xue HW 《The Plant cell》2008,20(2):353-366
Inositol polyphosphate 5-phosphatase (5PTase) is a key enzyme in the phosphatidylinositol metabolic pathway, which plays critical roles in a number of cellular processes in plants. Our previous work implicated the role of 5PTase13, which encodes a WD40-containing type II 5PTase, in hormone-mediated cotyledon vein development. Here, we show that 5PTase13 is also involved in blue light responses in Arabidopsis thaliana. Compared with that in darkness, the expression of 5PTase13 was suppressed by blue light irradiation, and disruption of the gene resulted in shortened hypocotyls and expanded cotyledons. Genetic analysis showed that 5PTase13 acted independently from CRYPTOCHROME1 and CONSTITUTIVE PHOTOMORPHOGENIC1 but interacted functionally with PHOTOTROPIN1 (PHOT1). The expression level of 5PTase13 was significantly enhanced in phot1 single or phot1 phot2 double mutants under blue light, and suppression of 5PTase13 expression rescued the elongated hypocotyls in the phot1 or phot1 phot2 mutants. Further analysis showed that the blue light-induced elevation of cytosolic Ca2+ was inhibited in the phot1 mutant but enhanced in the 5pt13 mutant, suggesting that 5PTase13 antagonizes PHOT1-mediated effects on calcium signaling under blue light.  相似文献   

19.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

20.
Recent genetic analysis showed that phototropins (phot1 and phot2) function as blue light receptors in stomatal opening of Arabidopsis thaliana, but no biochemical evidence was provided for this. We prepared a large quantity of guard cell protoplasts from Arabidopsis. The immunological method indicated that phot1 was present in guard cell protoplasts from the wild-type plant and the phot2 mutant, that phot2 was present in those from the wild-type plant and the phot1 mutant, and that neither phot1 nor phot2 was present in those from the phot1 phot2 double mutant. However, the same amounts of plasma membrane H+-ATPase were found in all of these plants. H+ pumping was induced by blue light in isolated guard cell protoplasts from the wild type, from the single mutants of phototropins (phot1-5 and phot2-1), and from the zeaxanthin-less mutant (npq1-2), but not from the phot1 phot2 double mutant. Moreover, increased ATP hydrolysis and the binding of 14-3-3 protein to the H+-ATPase were found in response to blue light in guard cell protoplasts from the wild type, but not from the phot1 phot2 double mutant. These results indicate that phot1 and phot2 mediate blue light-dependent activation of the plasma membrane H+-ATPase and illustrate that Arabidopsis guard cell protoplasts can be useful for biochemical analysis of stomatal functions. We determined isogenes of the plasma membrane H+-ATPase and found the expression of all isogenes of functional plasma membrane H+-ATPases (AHA1-11) in guard cell protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号