首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In voltage-clamped frog skeletal muscle fibers, Ca(2+) release rises rapidly to a peak, then decays to a nearly steady state. The voltage dependence of the ratio of amplitudes of these two phases (p/s) shows a maximum at low voltages and declines with further depolarization. The peak phase has been attributed to a component of Ca(2+) release induced by Ca(2+), which is proportionally greater at low voltages. We compared the effects of two interventions that inhibit Ca(2+) release: inactivation of voltage sensors, and local anesthetics reputed to block Ca(2+) release induced by Ca(2+). Holding the cells partially depolarized strongly reduced the peak and steady levels of Ca(2+) release elicited by a test pulse and suppressed the maximum of the p/s ratio at low voltages. The p/s ratio increased monotonically with test voltage, eventually reaching a value similar to the maximum found in noninactivated fibers. This implies that the marked peak of Ca(2+) release is a property of a cooperating collection of voltage sensors rather than individual ones. Local anesthetics reduced the peak of release flux at every test voltage, and the steady phase to a lesser degree. At variance with sustained depolarization, they made p/s low at all voltages. These observations were well-reproduced by the "couplon" model of dual control, which assumes that depolarization and anesthetics respectively, and selectively, disable its Ca(2+)-dependent or its voltage-operated channels. This duality of effects and their simulation under such hypotheses are consistent with the operation of a dual, two-stage control of Ca(2+) release in muscle, whereby Ca(2+) released through multiple directly voltage-activated channels builds up at junctions to secondarily open Ca(2+)-operated channels.  相似文献   

2.
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca(2+) release with single action potentials and a collapse of the Ca(2+) release with repetitive trains. Under voltage clamp, SR Ca(2+) release flux and total SR Ca(2+) release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.  相似文献   

3.
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.  相似文献   

4.
Impaired calcium release during fatigue.   总被引:1,自引:0,他引:1  
Impaired calcium release from the sarcoplasmic reticulum (SR) has been identified as a contributor to fatigue in isolated skeletal muscle fibers. The functional importance of this phenomenon can be quantified by the use of agents, such as caffeine, which can increase SR Ca(2+) release during fatigue. A number of possible mechanisms for impaired calcium release have been proposed. These include reduction in the amplitude of the action potential, potentially caused by extracellular K(+) accumulation, which may reduce voltage sensor activation but is counteracted by a number of mechanisms in intact animals. Reduced effectiveness of SR Ca(2+) channel opening is caused by the fall in intracellular ATP and the rise in Mg(2+) concentrations that occur during fatigue. Reduced Ca(2+) available for release within the SR can occur if inorganic phosphate enters the SR and precipitates with Ca(2+). Further progress requires the development of methods that can identify impaired SR Ca(2+) release in intact, blood-perfused muscles and that can distinguish between the various mechanisms proposed.  相似文献   

5.
Although it is well established that voltage-sensing of the alpha(1)-dihydropyridine receptor triggers Ca(2+)-release via the ryanodine receptor during excitation-contraction coupling in skeletal muscle fibers, it remains to be determined which junctional components are responsible for the assembly, maintenance, and stabilization of triads. Here, we analyzed the expression pattern and neighborhood relationship of a novel 90-kDa sarcoplasmic reticulum protein. This protein is highly enriched in the triad fraction and is predominantly expressed in fast-twitching muscle fibers. Chronic low-frequency electro-stimulation induced a drastic decrease in the relative abundance of this protein. Chemical crosslinking showed a potential overlap between the 90-kDa junctional face membrane protein and the ryanodine receptor Ca(2+)-release channel, suggesting tight protein-protein interactions between these two triad components. Hence, Ca(2+)-regulatory muscle proteins have a strong tendency to oligomerize and the triad region of skeletal muscle fibers forms supramolecular membrane complexes involved in the regulation of Ca(2+)-homeostasis and signal transduction.  相似文献   

6.
Store-operated Ca(2+) entry (SOCE) is a robust mechanism in skeletal muscle, supported by abundant STIM1 and Orai1 in the junctional membranes. The precise role of SOCE in skeletal muscle Ca(2+) homeostasis and excitation-contraction coupling remains to be defined. Regardless, it remains important to determine whether the function and capacity of SOCE changes in aged skeletal muscle. We identified an approximate 40% decline in the expression of the integral SOCE protein, stromal interacting molecule 1 (STIM1), but no such decline in its coupling partner, Orai1, in muscle fibers from aged mice. To determine whether this changed aspects of SOCE functionality in skeletal muscle in aged mice, Ca(2+) in the cytoplasm and t-system were continuously and simultaneously imaged on a confocal microscope during sarcoplasmic reticulum Ca(2+) release and compared to experiments under identical conditions using muscle fibers from young mice. Normal activation, deactivation, Ca(2+) influx, and spatiotemporal characteristics of SOCE were found to persist in skeletal muscle from aged mice. Thus, SOCE remains a robust mechanism in aged skeletal muscle despite the decline in STIM1 protein expression, suggesting STIM1 is in excess in young skeletal muscle.  相似文献   

7.
The presence and role of functional inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP(3)Rs is too low and the kinetics of Ca(2+) release from IP(3)R is too slow compared with ryanodine receptors to contribute to the Ca(2+) transient during excitation-contraction coupling. However, it has been suggested that IP(3)-dependent Ca(2+) release may be involved in signaling cascades leading to regulation of muscle gene expression. We have reinvestigated IP(3)-dependent Ca(2+) release in isolated flexor digitorum brevis (FDB) muscle fibers from adult mice. Although Ca(2+) transients were readily induced in cultured C2C12 muscle cells by (a) UTP stimulation, (b) direct injection of IP(3), or (c) photolysis of membrane-permeant caged IP(3), no statistically significant change in calcium signal was detected in adult FDB fibers. We conclude that the IP(3)-IP(3)R system does not appear to affect global calcium levels in adult mouse skeletal muscle.  相似文献   

8.
The 33 amino acid scorpion toxin maurocalcine (MCa) has been shown to modify the gating of the skeletal-type ryanodine receptor (RyR1). Here we explored the effects of MCa and its mutants ([Ala8]MCa, [Ala19]MCa, [Ala20]MCa, [Ala22]MCa, [Ala23]MCa, and [Ala24]MCa) on RyR1 incorporated into artificial lipid bilayers and on elementary calcium release events (ECRE) in rat and frog skeletal muscle fibers. The peptides induced long-lasting subconductance states (LLSS) on RyR1 that lasted for several seconds. However, their average length and frequency were decreased if the mutation was placed farther away in the 3D structure from the critical 24Arg residue. The effect was strongly dependent on the direction of the current through the channel. If the direction was similar to that followed by calcium during release, the peptides were 8- to 10-fold less effective. In fibers long-lasting calcium release events were observed after the addition of the peptides. The average length of these events correlated well with the duration of LLSS. These data suggest that the effect of the peptide is governed by the large charged surface formed by residues Lys20, Lys22, Arg23, Arg24, and Lys8. Our observations also indicate that the results from bilayer experiments mimic the in situ effects of MCa on RyR1.  相似文献   

9.
The purified ryanodine receptor of heart sarcoplasmic reticulum (SR) has been reconstituted into planar phospholipid bilayers and found to form Ca2+-specific channels. The channels are strongly activated by Ca2+ (10 nM) in the presence of ATP (1 mM) and ryanodine, and inactivated by Mg2+ (3 mM) or ruthenium red (30 microM). These characteristics are diagnostic of calcium release from heart SR. The cardiac ryanodine receptor, which has previously been identified as the foot structure, is now identified as the calcium release channel. A similar identity of the calcium release channel has recently been reported for skeletal muscle. The characteristics of the calcium release channel from skeletal muscle and heart are similar in that they: 1) consist of an oligomer of a single high molecular weight polypeptide (Mr 360,000 for skeletal muscle and 340,000 for heart); 2) exist morphologically as the foot structure; 3) are activated (ATP, Ca2+, ryanodine) and inhibited (ruthenium red and Mg2+) by a number of the same ligands. Important differences include: 1) Ca2+ activation at lower concentration of Ca2+ for the heart; 2) more dramatic stabilization by ryanodine of the open state for the skeletal muscle channel; and 3) different relative permeabilities (PCa/PK).  相似文献   

10.
The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca(2+) release flux (derived from [Ca(2+)](c)(t)) over the gradient that drives it (essentially equal to [Ca(2+)](SR)) provided directly, for the first time, a dynamic measure of the permeability to Ca(2+) of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca(2+)](SR) stabilized at ~35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ~10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca(2+) release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca(2+)](SR), sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca(2+) release.  相似文献   

11.
In striated muscles, intracellular Ca(2+) release is tightly controlled by the membrane voltage sensor. Ca(2+) ions are necessary mediators of this control in cardiac but not in skeletal muscle, where their role is ill-understood. An intrinsic gating oscillation of Ca(2+) release-not involving the voltage sensor-is demonstrated in frog skeletal muscle fibers under voltage clamp. A Markov model of the Ca(2+) release units is shown to reproduce the oscillations, and it is demonstrated that for Markov processes to have oscillatory transients, its transition rates must violate thermodynamic reversibility. Such irreversibility results in permanent cycling of the units through a ring of states, which requires a source of free energy. Inhibition of the oscillation by 20 to 40 mM EGTA or partial depletion of Ca(2+) in the sarcoplasmic reticulum (SR) identifies the SR [Ca(2+)] gradient as the energy source, and indicates a location of the critical Ca(2+)-sensing site at distances greater than 35 nm from the open channel. These results, which are consistent with a recent demonstration of irreversibility in gating of cardiac Ca(2+) sparks, (Wang, S.-Q., L.-S. Song, L. Xu, G. Meissner, E. G. Lakatta, E. Ríos, M. D. Stern, and H. Cheng. 2002. Biophys. J. 83:242-251) exemplify a cell-wide oscillation caused by coupling between ion permeation and channel gating.  相似文献   

12.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

13.
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.  相似文献   

14.
Although all muscle cells generate contractile forces by means of organized filament systems, isoform expression patterns of contractile and regulatory proteins in heart are not identical compared to developing, conditioned or mature skeletal muscles. In order to determine biochemical parameters that may reflect functional variations in the Ca(2+)-regulatory membrane systems of different muscle types, we performed a comparative immunoblot analysis of key membrane proteins involved in ion homeostasis. Cardiac isoforms of the alpha(1)-dihydropyridine receptor, Ca(2+)-ATPase and calsequestrin are also present in skeletal muscle and are up-regulated in chronic low-frequency stimulated fast muscle. In contrast, the cardiac RyR2 isoform of the Ca(2+)-release channel was not found in slow muscle but was detectable in neonatal skeletal muscle. Up-regulation of RyR2 in conditioned muscle was probably due to degeneration-regeneration processes. Fiber type-specific differences were also detected in the abundance of auxiliary subunits of the dihydropyridine receptor, the ryanodine receptor and the Ca(2+)-ATPase, as well as triad markers and various Ca(2+)-binding and ion-regulatory proteins. Hence, the variation in innervation of different types of muscle appears to have a profound influence on the levels and pattern of isoform expression of Ca(2+)-regulatory membrane proteins reflecting differences in the regulation of Ca(2+)-homeostasis. However, independent of the muscle cell type, key Ca(2+)-regulatory proteins exist as oligomeric complexes under native conditions.  相似文献   

15.
Zhang SY  Liu G  Wang DL  Guo XJ  Qian GS 《生理学报》2000,52(6):497-501
本文测定了兔膈肌钙释放单位中骨骼肌型DHPRα1-亚单位和RyRs的mRNA与蛋白表达水平,探讨了兔膈肌钙释放单位的结构组成特征。采用RT-PCR、原位杂交和免疫组织化学技术,分别测定兔膈肌骨骼肌型DHPRα1-亚单位和RyR1、RyR2及RyR3的mRNA与蛋白表达。结果显示,兔膈肌可见较高水平的骨骼肌型α1-亚单位和RyR1mRNA与蛋白表达;较低水平的RyR3 mRNA与蛋白表达。表明兔膈肌  相似文献   

16.
The effects of dantrolene sodium (DAN) on the dihydropyridine receptor (DHPR) of the transverse (T) tubule voltage sensor (Ca2+ channel) was studied with single fibers from bullfrog toe muscle. Perchlorate (ClO4-), which acts selectively on the DHPR, overcame DAN-induced inhibition of twitch tension. Bay K 8644, a DHPR agonist, slowed the rate of twitch inhibition by DAN. DAN inhibited twitch tension to a greater extent in Ca(2+)-free solution than in Ringer solution or solution containing Zn2+, whereas twitch inhibition by DAN was less in caffeine-containing solution than in the control. The effects of DAN on Zn(2+)- and caffeine-treated fibers and on fibers in Ca(2+)-free solution suggest that DAN must act near the voltage sensor of the T tubule. However, differences in net twitch inhibition by DAN between control fibers and fibers potentiated by ClO4- or Bay K 8644 suggest that DAN does not bind to the same site as these potentiating agents do. The role of myoplasmic Ca2+ in DAN-induced inhibition of twitch and the effects of DAN on the mechanical threshold and membrane potential in skeletal muscle are discussed.  相似文献   

17.
Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Defective coupling between sarcoplasmic reticulum and mitochondria during control of intracellular Ca(2+) signaling has been implicated in the progression of neuromuscular diseases. Our previous study showed that skeletal muscles derived from an amyotrophic lateral sclerosis (ALS) mouse model displayed segmental loss of mitochondrial function that was coupled with elevated and uncontrolled sarcoplasmic reticulum Ca(2+) release activity. The localized mitochondrial defect in the ALS muscle allows for examination of the mitochondrial contribution to Ca(2+) removal during excitation-contraction coupling by comparing Ca(2+) transients in regions with normal and defective mitochondria in the same muscle fiber. Here we show that Ca(2+) transients elicited by membrane depolarization in fiber segments with defective mitochondria display an ~10% increased amplitude. These regional differences in Ca(2+) transients were abolished by the application of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, a fast Ca(2+) chelator that reduces mitochondrial Ca(2+) uptake. Using a mitochondria-targeted Ca(2+) biosensor (mt11-YC3.6) expressed in ALS muscle fibers, we monitored the dynamic change of mitochondrial Ca(2+) levels during voltage-induced Ca(2+) release and detected a reduced Ca(2+) uptake by mitochondria in the fiber segment with defective mitochondria, which mirrored the elevated Ca(2+) transients in the cytosol. Our study constitutes a direct demonstration of the importance of mitochondria in shaping the cytosolic Ca(2+) signaling in skeletal muscle during excitation-contraction coupling and establishes that malfunction of this mechanism may contribute to neuromuscular degeneration in ALS.  相似文献   

19.
Maurocalcine (MCa) is a 33 amino acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. MCa and mutated analogues were chemically synthesized, and their interaction with the skeletal muscle ryanodine receptor (RyR1) was studied on purified RyR1, sarcoplasmic reticulum (SR) vesicles, and cultured myotubes. MCa strongly potentiates [3H]ryanodine binding on SR vesicles (7-fold at pCa 5) with an apparent EC50 of 12 nm. MCa decreases the sensitivity of [3H]ryanodine binding to inhibitory high Ca2+ concentrations and increases it to the stimulatory low Ca2+ concentrations. In the presence of MCa, purified RyR1 channels show long-lasting openings characterized by a conductance equivalent to 60% of the full conductance. This effect correlates with a global increase in Ca2+ efflux as demonstrated by MCa effects on Ca2+ release from SR vesicles. In addition, we show for the first time that external application of MCa to cultured myotubes produces a cytosolic Ca2+ increase due to Ca2+ release from 4-chloro-m-cresol-sensitive intracellular stores. Using various MCa mutants, we identified a critical role of Arg24 for MCa binding onto RyR1. All of the other MCa mutants are still able to modify [3H]ryanodine binding although with a decreased EC50 and a lower stimulation efficacy. All of the active mutants produce both the appearance of a subconductance state and Ca2+ release from SR vesicles. Overall, these data identify some amino acid residues of MCa that support the effect of this toxin on ryanodine binding, RyR1 biophysical properties, and Ca2+ release from SR.  相似文献   

20.
In skeletal muscle, release of calcium from the sarcoplasmic reticulum (SR) represents the major source of cytoplasmic Ca2+ elevation. SR calcium release is under the strict command of the membrane potential, which drives the interaction between the voltage sensors in the t-tubule membrane and the calcium-release channels. Either detection or control of the membrane voltage is thus essential when studying intracellular calcium signaling in an intact muscle fiber preparation. The silicone-clamp technique used in combination with intracellular calcium measurements represents an efficient tool for such studies. This article reviews some properties of the plasma membrane and intracellular signals measured with this methodology in mouse skeletal muscle fibers. Focus is given to the potency of this approach to investigate both fundamental aspects of excitation-contraction coupling and potential alterations of intracellular calcium handling in some muscle diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号