首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of the Gram-positive human pathogen Streptococcus pyogenes (group A streptococcus) that express surface-associated M or M-like proteins survive and grow in non-immune fresh human blood. This is generally accepted to be caused by an antiphagocytic property of these proteins. However, in most previous studies, an inhibition of the internalization of the bacteria into host cells has not been studied or not directly demonstrated. Therefore, in the present paper, we used flow cytometry, fluorescence microscopy and electron microscopy to study phagocytosis by human neutrophils of wild-type S. pyogenes and strains deficient in expression of M protein and/or the M-like protein H. The results demonstrate that all strains of S. pyogenes tested, including the wild-type AP1 strain, induce actin polymerization and are efficiently phagocytosed by human neutrophils. In addition, using classical bactericidal assays, we show that the wild-type AP1 strain can survive inside neutrophils, whereas mutant strains are rapidly killed. We conclude that the ability of virulent S. pyogenes to survive and multiply in whole blood is most likely not possible to explain only by an antiphagocytic effect of bacterial surface components. Instead, our data suggest that bacterial evasion of host defences occurs intracellularly and that survival inside human neutrophils may contribute to the pathogenesis of S. pyogenes and the recurrence of S. pyogenes infections.  相似文献   

2.
Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided key information for the elucidation of the host-pathogen interactions and might assist in the development of potential chemotherapeutic strategies to prevent or treat streptococcal diseases.  相似文献   

3.
Streptococcal pyrogenic exotoxin C (SPE C) is a superantigen produced by many strains of Streptococcus pyogenes that (along with streptococcal pyrogenic exotoxin A) is highly associated with streptococcal toxic shock syndrome (STSS) and other invasive streptococcal diseases. Based on the three-dimensional structure of SPE C, solvent-exposed residues predicted to be important for binding to the TCR or the MHC class II molecule, or important for dimerization, were generated. Based on decreased mitogenic activity of various single-site mutants, the double-site mutant Y15A/N38D and the triple-site mutant Y15A/H35A/N38D were constructed and analyzed for superantigenicity, toxicity (lethality), immunogenicity, and the ability to protect against wild-type SPE C-induced STSS. The Y15A/N38D and Y15A/H35A/N38D mutants were nonmitogenic for rabbit splenocytes and human PBMCs and nonlethal in two rabbit models of STSS, yet both mutants were highly immunogenic. Animals vaccinated with the Y15A/N38D or Y15A/H35A/N38D toxoids were protected from challenge with wild-type SPE C. Collectively, these data indicate that the Y15A/N38D and Y15A/H35A/N38D mutants may be useful as toxoid vaccine candidates.  相似文献   

4.
Streptococcus pyogenes is an important human pathogen that causes invasive diseases such as necrotizing fasciitis, sepsis, and streptococcal toxic shock syndrome. We investigated the function of a major cysteine protease from S. pyogenes that affects the amount of C1-esterase inhibitor (C1-INH) and other complement factors and aimed to elucidate the mechanism involved in occurrence of streptococcal toxic shock syndrome from the aspect of the complement system. First, we revealed that culture supernatant of a given S. pyogenes strain and recombinant SpeB degraded the C1-INH. Then, we determined the N-terminal sequence of the C1-INH fragment degraded by recombinant SpeB. Interestingly, the region containing one of the identified cleavage sites is not present in patients with C1-INH deficiency. Scanning electron microscopy of the speB mutant incubated in human serum showed the abnormal superficial architecture and irregular oval structure. Furthermore, unlike the wild-type strain, that mutant strain showed lower survival capacity than normal as compared with heat-inactivated serum, whereas it had a significantly higher survival rate in serum without the C1-INH than in normal serum. Also, SpeB degraded multiple complement factors and the membrane attack complex. Flow cytometric analyses revealed deposition of C9, one of the components of membrane the attack complex, in greater amounts on the surface of the speB mutant, whereas lower amounts of C9 were bound to the wild-type strain surface. These results suggest that SpeB can interrupt the human complement system via degrading the C1-INH, thus enabling S. pyogenes to evade eradication in a hostile environment.  相似文献   

5.
Superantigens (SAgs) play an important role in the pathogenesis of severe invasive infections caused by Group A Streptococcus (GAS). We had shown earlier that the expression of streptococcal cysteine protease SpeB results in partial loss of the immune-stimulating activity of the native secreted GAS SAgs, namely the streptococcal pyrogenic exotoxins produced by the globally disseminated M1T1 GAS strain, associated with invasive infections worldwide. In this study, we examined the susceptibility of each of the M1T1 recombinant SAgs to degradation by rSpeB. Whereas SmeZ was degraded completely within 30 min of incubation with rSpeB, SpeG, and SpeA were more resistant and SpeJ was completely unaffected by the proteolytic effects of this protease. Proteomic analyses demonstrated that the order of susceptibility of the M1T1 SAgs to SpeB proteolysis is unaltered when they are present in a mixture that reflects their native physiological status. As expected, the degradation of SmeZ abolished its immune stimulatory activity. In silico sequence disorder and structural analyses revealed that SmeZ, unlike the three other structurally related SAgs, possesses a putative SpeB cleavage site within an area of the protein likely to be exposed to the surface. The study provides evidence for the effect of subtle structural differences between highly similar SAgs on their biological activity.  相似文献   

6.
A fundamental step in the life cycle of Francisella tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum nor the receptors that mediate infection of neutrophils have been defined. In this study, human neutrophil uptake of GFP-expressing F. tularensis strains live vaccine strain and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components, we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis, whereas C5 was not. Second, we used purification and immunodepletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-Ag and capsule as prominent targets of these Abs on the bacterial surface. Finally, we demonstrate using receptor-blocking Abs that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-Ag polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3 opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner.  相似文献   

7.
Complement is one of the first host defense barriers against bacteria. Activated complement attracts neutrophils to the site of infection and opsonizes bacteria to facilitate phagocytosis. The human pathogen Staphylococcus aureus has successfully developed ways to evade the complement system, for example by secretion of specific complement inhibitors. However, the influence of S. aureus proteases on the host complement system is still poorly understood. In this study, we identify the metalloprotease aureolysin as a potent complement inhibitor. Aureolysin effectively inhibits phagocytosis and killing of bacteria by neutrophils. Furthermore, we show that aureolysin inhibits the deposition of C3b on bacterial surfaces and the release of the chemoattractant C5a. Cleavage analyses show that aureolysin cleaves the central complement protein C3. Strikingly, there was a clear difference between the cleavages of C3 in serum versus purified conditions. Aureolysin cleaves purified C3 specifically in the α-chain, close to the C3 convertase cleavage site, yielding active C3a and C3b. However, in serum we observe that the aureolysin-generated C3b is further degraded by host factors. We pinpointed these factors to be factor H and factor I. Using an aureolysin mutant in S. aureus USA300, we show that aureolysin is essential and sufficient for C3 cleavage by bacterial supernatant. In short, aureolysin acts in synergy with host regulators to inactivate C3 thereby effectively dampening the host immune response.  相似文献   

8.
9.
We examined the fate of C component C3 on the surface of Salmonella typhimurium during ingestion by human neutrophils. Initial experiments showed that C3 fragments and C3-acceptor complexes were the major serum ligands which were surface iodinated by canine myeloperoxidase on serum-incubated rough and smooth isolates of S. typhimurium. In contrast, labeled C3 was not identified when the same organisms were ingested by neutrophils in the presence of 125I-Na, a situation previously shown to iodinate particulate targets via the neutrophil myeloperoxidase-halide-H2O2 system. Pretreatment of neutrophils before phagocytosis with the lipid-soluble protease inhibitor diisopropylfluorophosphate (DFP), but not with other protease inhibitors (p-nitrophenylguanidinobenzoate, leupeptin, pepstatin), substantially blocked proteolysis of 125I-C3 on S. typhimurium strain RG108 during ingestion by neutrophils. Purification of neutrophil phagosomes containing S. typhimurium-bearing 125I-C3 showed that DFP but no other protease inhibitors blocked proteolysis of 125I-C3 within phagosomes. Iodinated C3-acceptor complexes were identified by immunoprecipitation from the detergent-insoluble fraction of phagosomes prepared from DFP-treated cells ingesting S. typhimurium in the presence of 125I-Na. These results show that C3 fragments on the surface of S. typhimurium are the major serum ligands which are halogenated and degraded by proteolysis during phagocytosis by human neutrophils, and suggest that the majority of proteolysis on the ingested target occurs within the neutrophil phagosome.  相似文献   

10.
Streptococcus pyogenes utilizes multiple mechanisms for adherence to and internalization by epithelial cells. One of the molecules suggested of being involved in adherence and internalization is the M protein. Although strains of the M3 serotype form the second largest group isolated from patients with severe invasive diseases and fatal infections, not much information is known regarding the interactions of M3 protein with mammalian cells. In this study we have constructed an emm3 mutant of an invasive M3 serotype (SP268), and demonstrated that the M3 protein is involved in both adherence to and internalization by HEp-2 cells. Fibronectin promoted both adherence and internalization of SP268 in an M3-independent pathway. Utilizing speB and speB/emm3 double mutants, it was found that M3 protein is not essential for the maturation of SpeB, as was reported for the M1 protein. Increased internalization efficiency observed in both the speB and emm3/speB mutants suggested that inhibition of S. pyogenes internalization by SpeB is not related to the presence of an intact M3 protein. Thus, other proteins in SP268, which serve as targets for SpeB activity, have a prominent role in the internalization process.  相似文献   

11.
Streptococcus pyogenes is an important pathogen that causes pharyngitis, sepsis, and rheumatic fever. Cell-associated streptococcal C5a peptidase (ScpA) protects S. pyogenes from phagocytosis and has been suggested to interrupt host defenses by enzymatically cleaving complement C5a, a major factor in the accumulation of neutrophils at sites of infection. How S. pyogenes recognizes and binds to C5a, however, is unclear. We detected a C5a-binding protein in 8 M urea extracts of S. pyogenes by ligand blotting using biotinylated C5a. Searching of genome databases showed that the C5a-binding protein is identical to the streptococcal plasmin receptor (Plr), also known as streptococcal surface dehydrogenase (SDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In the present study we identified a novel function of this multifunctional protein. Western blotting and immunofluorescence microscopy with anti-Plr/SDH/GAPDH showed that Plr/SDH/GAPDH is located on the bacterial surface and released into the culture supernatant. Next, we examined whether the streptococcal Plr/SDH/GAPDH inhibits the biological effects of C5a on human neutrophils. We found that soluble Plr/SDH/GAPDH inhibits C5a-activated chemotaxis and H2O2 production. Furthermore, our results suggested that soluble Plr/SDH/GAPDH captures C5a, inhibiting its chemotactic function. Also, cell-associated Plr/SDH/GAPDH and ScpA were both necessary for the cleavage of C5a on the bacterial surface. Together, these results indicate that the multifunctional protein Plr/SDH/GAPDH has additional functions that help S. pyogenes escape detection by the host immune system.  相似文献   

12.
13.
Binding of alpha 2-macroglobulin (alpha 2M) to streptococci and its effects on phagocytosis were investigated. Two types of streptococcal binding sites for alpha 2M were observed: Streptococcus pyogenes from human infections interacted only with native alpha 2M whereas S. dysgalactiae from bovine and S. equi from equine infections bound only a complex of alpha 2M with trypsin (alpha 2M-T). Preincubation of S. pyogenes with native alpha 2M substantially enhanced their phagocytosis by human polymorphonuclear neutrophils (PMN) whereas preincubation with alpha 2M-T was without any effect. On the other hand, incubation of S. dysgalactiae and S. equi with alpha 2M-T markedly reduced their phagocytosis by PMN from the respective host species. Native alpha 2M did not affect the phagocytosis of these streptococci. Digestion of the streptococcal binding sites for alpha 2M and alpha 2M-T pronase abolished the enhancement of phagocytosis of S. pyogenes by native alpha 2M as well as the inhibition of phagocytosis of S. dysgalactiae and S. equi by alpha 2M-T. Thus, binding of alpha 2M or its complexes appeared to play a role in streptococcal pathogenicity.  相似文献   

14.
Streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes is a clinical condition with a high mortality rate despite modern intensive care. A key feature of STSS is excessive plasma leakage leading to hypovolemic hypotension, disturbed microcirculation and multiorgan failure. Previous work has identified a virulence mechanism in STSS where M1 protein of S. pyogenes forms complexes with fibrinogen that activate neutrophils to release heparin-binding protein (HBP), an inducer of vascular leakage. Here, we report a marked inter-individual difference in the response to M1 protein-induced HBP release, a difference found to be related to IgG antibodies directed against the central region of the M1 protein. To elicit massive HBP release, such antibodies need to be part of the M1 protein-fibrinogen complexes. The data add a novel aspect to bacterial pathogenesis where antibodies contribute to the severity of disease by promoting a pathologic inflammatory response.  相似文献   

15.
Complement is important for innate immunity to the common bacterial pathogen Streptococcus pyogenes, but the relative importance of the alternative and classical pathways has not been investigated. Using mice and human serum deficient in either C1q, the first component of the classical pathway, or factor B, an important component of the alternative pathway, we have investigated the role of both pathways for innate immunity to S. pyogenes. C3b deposition on four different strains of S. pyogenes was mainly dependent on factor B. As a consequence opsonophagocytosis of S. pyogenes was reduced in serum from factor B-deficient mice, and these mice were very susceptible to S. pyogenes infection. In contrast, C3b deposition was not dependent on C1q for two of the strains investigated, H372 and H305, yet opsonophagocytosis of all four S. pyogenes strains was impaired in serum deficient in C1q. Furthermore, infection in C1q-deficient mice with strain H372 resulted in a rapidly progressive disease associated with large numbers of bacteria in target organs. These results demonstrate the important role of the alternative pathway and C1q for innate immunity to S. pyogenes and suggest that C1q-mediated innate immunity to at least some strains of S. pyogenes may involve mechanisms that are independent of C3b on the bacteria.  相似文献   

16.
Increased vascular permeability is a key feature of inflammatory conditions. In severe infections, leakage of plasma from the vasculature induces a life-threatening hypotension. Streptococcus pyogenes, a major human bacterial pathogen, causes a toxic shock syndrome (STSS) characterized by excessive plasma leakage and multi-organ failure. Here we find that M protein, released from the streptococcal surface, forms complexes with fibrinogen, which by binding to beta2 integrins of neutrophils, activate these cells. As a result, neutrophils release heparin binding protein, an inflammatory mediator inducing vascular leakage. In mice, injection of M protein or subcutaneous infection with S. pyogenes causes severe pulmonary damage characterized by leakage of plasma and blood cells. These lesions were prevented by treatment with a beta2 integrin antagonist. In addition, M protein/fibrinogen complexes were identified in tissue biopsies from a patient with necrotizing fasciitis and STSS, further underlining the pathogenic significance of such complexes in severe streptococcal infections.  相似文献   

17.
The serine protease high-temperature requirement A (HtrA) (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease streptococcal pyrogenic exotoxin B (SpeB). Here, we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5DeltahtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5DeltahtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type (WT). Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5DeltahtrA supernatant. HtrA was unable to directly process SpeB zymogen (proSpeB) to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.  相似文献   

18.
Although subjects with inherited defects of the classical complement pathway component C2 are at increased risk of infection, there are few experimental data available on which bacterial pathogens they might be susceptible to. In order to investigate whether patients with inherited C2 deficiency may have increased susceptibility to Streptococcus pyogenes infection we have analysed opsonization with C3b/iC3b and phagocytosis of three different strains of S. pyogenes in serum from 8 C2?/? subjects using flow cytometry assays. Sera from patients with C2 deficiency had a markedly reduced ability to opsonise S. pyogenes with C3b/iC3b. In addition, phagocytosis of all three S. pyogenes strains was impaired in sera from C2?/? subjects. Both the reduced opsonisation with C3b/iC3b and phagocytosis in C2?/? sera were markedly improved by addition of exogenous C2 protein. Neutrophil dependent killing was also reduced, confirming the functional importance of C2 deficiency for immunity to S. pyogenes. Impaired opsonisation with C3b/iC3b and phagocytosis was not related to reduced recognition of the bacteria by antibody. These data suggest that patients with C2 deficiency are at increased risk of S. pyogenes infections.  相似文献   

19.
Previous work has indicated that the turnover of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1. 39) may be controlled by the redox state of certain cysteine residues. To test this hypothesis, directed mutagenesis and chloroplast transformation were employed to create a C172S substitution in the Rubisco large subunit of the green alga Chlamydomonas reinhardtii. The C172S mutant strain was not substantially different from the wild type with respect to growth rate, and the purified mutant enzyme had a normal circular dichroism spectrum. However, the mutant enzyme was inactivated faster than the wild-type enzyme at 40 and 50 degrees C. In contrast, C172S mutant Rubisco was more resistant to sodium arsenite, which reacts with vicinal dithiols. The effect of arsenite may be directed to the cysteine 172/192 pair that is present in the wild-type enzyme, but absent in the mutant enzyme. The mutant enzyme was also more resistant to proteinase K in vitro at low redox potential. Furthermore, oxidative (hydrogen peroxide) or osmotic (mannitol) stress-induced degradation of Rubisco in vivo was delayed in C172S mutant cells relative to wild-type cells. Thus, cysteine residues could play a role in regulating the degradation of Rubisco under in vivo stress conditions.  相似文献   

20.
The functional roles of IgG and C3b in phagocytosis by human peripheral neutrophils were investigated. Phagocytosis of Staphylococcus aureus in the presence of human serum was severely depressed by heat inactivation of serum at 56 degrees C for 30 min. Experiments with varying particle: leukocyte ratios in the presence of complement-inactivated sera showed that particle-bound C3b can mediate a 10-fold enhancement of the overall phagocytic rate. When sheep erythrocytes were sensitized with either IgG or IgM, only the former were bound to and readily internalized by neutrophils. Erythrocytes sensitized with both IgM and C3b were bound but not internalized. Furthermore, the presence of Fc fragments during incubation of S. aureus or latex beads with neutrophils in the presence of IgG or fresh serum affected a total inhibition of internalization but did not significantly alter adherence. Quantitative data regarding IgG sensitization indicated that bound C3b results in at least a 3-fold decrease in the amount of sensitizing IgG required for 50% maximal phagocytic response by neutrophils. On the basis of the above results, it is argued that particle-bound C3b functions primarily in the adherence phase and that bound IgG serves as a trigger for the internalization phase of phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号