首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of a strain of Acinetobacter competent for transformation has made it possible to demonstrate the genetic relatedness of a large variety of gram-negative, oxidase-negative, nonmotile, and aerobic coccobacilli originally classified into eleven different genera. Deoxyribonucleic acid (DNA) species from 265 such strains are capable of transforming stable auxotrophs of the competent Acinetobacter to prototrophy. The compositions of these DNA species vary from 40 to 46.8% guanine plus cytosine. Strains with widely differing phenotypic properties are also included in this collection of acinetobacters. DNA species from all oxidase-positive strains of Moraxella and from a variety of common bacteria are unable to transform the competent Acinetobacter. Although acinetobacters are usually considered to be unable to reduce nitrate to nitrite, six strains known to carry out this reduction have been shown to be authentic acinetobacters since their DNA species readily transform the competent Acinetobacter auxotrophs to prototrophy. In contrast to previous findings that acinetobacters rarely grow with glucose as a sole carbon source, the results of the present study show that 17 of the 265 strains grow readily in a glucosemineral medium, and 48 other strains can mutate spontaneously to grow in such a medium. A second competent strain of Acinetobacter, originally unable to use glucose, d-xylose, or d-ribose as carbon sources, has been transformed for ability to dissimilate these compounds using DNA species from strains that normally grow on these sugars. Although most of the 265 Acinetobacter strains studied were originally grown on complex media when isolated from human sources, only nine of these strains require growth factors in order to grow in a mineral medium containing a single carbon and energy source. A simple transformation assay has been devised for rapid examination of large numbers of strains to determine whether or not they are acinetobacters. This assay, which is suitable for routine diagnostic work, includes a procedure for preparation of crude transforming DNA from a small quantity of bacterial paste. Samples of DNA prepared from Acinetobacter cultures that had died on slants and plates were still able to effect transformation of the competent auxotrophs to prototrophy.  相似文献   

2.
Nucleic Acid Homologies Among Oxidase-Negative Moraxella Species   总被引:5,自引:1,他引:4       下载免费PDF全文
The deoxyribonucleic acid (DNA) base composition and DNA homologies of more than 40 strains of oxidase-negative Moraxella species were determined. These bacteria have also been identified as belonging to the Mima-Herellea-Acinetobacter group and the Bacterium anitratum group, as well as to several other genera including Achromobacter and Alcaligenes. The DNA base content of these strains ranged from 40 to 46% guanine plus cytosine. DNA-DNA competition experiments distinguished five groups whose members were determined by showing 50% or more homology to one of the reference strains: B. anitratum type B5W, Achromobacter haemolyticus var. haemolyticus, Alcaligenes haemolysans, Achromobacter metalcaligenes, and Moraxella lwoffi. A sixth group comprised those strains showing less than 50% homology to any of the reference strains. Negligible homology was found between strains of oxidase-negative and oxidase-positive Moraxella species in DNA-DNA competition experiments. However, evidence of a distant relationship between the two groups was obtained in competition experiments by using ribosomal ribonucleic acid.  相似文献   

3.
The name Yokenella gen. nov. is proposed for a group of organisms in the family Enterobacteriaceae isolated from clinical sources and insects. Yokenella is a gram-negative, oxidase-negative, fermentative, motile rod possessing the characteristics of the family Enterobacteriaceae and the guanine plus cytosine contents of the DNA range from 58.0 to 59.3 mol%. Biochemical characteristics of this group and DNA hybridization studies indicate that the 11 strains studied here comprise a separate species which should be best placed in a new genus. This single DNA hybridization group is named Yokenella regensburgei sp. nov. The type strain of Y. regensburgei is NIH 725-83 (JCM 2403).  相似文献   

4.
More than 70 morphological, biochemical, and nutritional characters of 291 strains of aerobic, oxidase-negative, gram-negative coccobacilli representing theAchromobacter-Acinetobacter group of bacteria were examined. The subdivision of these bacteria is discussed in terms of glucolytic activity in a modified infusion medium, production of gelatinase, hemolysis of blood agar, growth on SS Agar, and utilization of selected organic compounds as the sole source of carbon and energy. On the basis of these characters the bacteria were divided into three major groups — glucolytic, nonglucolytic, and proteolytic which comprised six less clearly defined minor subgroups. Generic and species names currently applied to these bacteria are listed.  相似文献   

5.
Taxonomy of Aerobic Marine Eubacteria   总被引:35,自引:4,他引:31       下载免费PDF全文
Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are discussed.  相似文献   

6.
Taxonomy of Marine Bacteria: the Genus Beneckea   总被引:49,自引:10,他引:39       下载免费PDF全文
One-hundred-and-forty-five isolates of marine origin were submitted to an extensive physiological, nutritional, and morphological characterization. All strains were gram-negative, facultatively anaerobic, straight or curved rods which were motile by means of flagella. Glucose was fermented with the production of acid but no gas. Sodium but no organic growth factors were required. None of the strains were able to denitrify or fix molecular nitrogen. The results of nutritional and physiological tests were submitted to a numerical analysis. On the basis of phenotypic similarity, nine groups were established. These groups could be distinguished from one another by multiple, unrelated, phenotypic traits. Six groups which had deoxyribonucleic acid (DNA) containing 45 to 48 moles per cent guanine plus cytosine (GC) were assigned to a redefined genus Beneckea. All of the strains in this genus, when grown in liquid medium, had a single, polar flagellum. When grown on a solid medium, many strains had peritrichous flagella. Two groups were similar to previously described species and were designated B. alginolytica and B. natriegens. The remaining four groups were designated B. campbellii, B. neptuna, B. nereida, and B. pelagia. An additional group of phenotypically similar strains having the properties of the genus Beneckea was not included in the numerical analysis. These strains were readily separable from species of this genus and were designated B. parahaemolytica. Of the remaining groups, one was identified as Photobacterium fischeri. The other group (B-2) which had about 41 moles% GC content in its DNA could not be placed into existing genera.  相似文献   

7.
Several isolates representing the genus Trichosporon were collected over a 6-year period from soils in The Netherlands. Based on classical growth tests with carbon and nitrogen compounds these were identical. Three of these (CBS 8396, CBS 8397 and CBS 8522) were subjected to molecular analysis of the D1/D2 region of the large subunit of rDNA. This confirmed that the three strains were identical, yet distinct from other members of the genus. Conspecificity was demonstrated with the type strain (CBS 2040) of Apiotrichum porosum Stautz (1931), with the exception that A. porosum, which had been isolated from exudate of a yew tree, differed morphologically from the soil strains. Based on the identity of DNA base sequences, morphology was not considered to be an adequate parameter to separate otherwise identical strains into two genera. Therefore, the new combination Trichosporon porosum is presented. Based on molecular sequence analysis, T. porosum may be related to T. sporotrichoides, within a weakly related clade that includes species such as Trichosporon laibachii and Trichosporon loubieri. The strains of T. porosum degrade phenolic compounds and hemicelluloses, which are characteristics with potential ecological importance in soil habitats. Characters distinguishing the nine species of the laibachii/loubieri group of species were listed. These include traditionally used tests as well as assimilation patterns of some aliphatic and phenolic compounds. Based on these tests, species such as Trichosporon multisporum and T. laibachii could be separated.  相似文献   

8.
Summary Studies on the morphological and physiological characteristics of two strains of Lineola longa showed that these aerobic bacteria form endospores, are Gram-positive and have peritrichous flagella. On the basis of these observations it was concluded that L. longa is, in fact, a Bacillus species. This conclusion was strengthened by the fact that both strains exhibited nutritional characteristics often encountered among the aerobic sporeforming rods, such as requirements for biotin and thiamine in the growth medium. The base ratio of the DNA purified from L. longa was found to be within the range reported for a number of species of Bacillus.Additional investigation of the nutritional behavior of L. longa indicated that neither strain studied used glucose as an oxidizable substrate or as a carbon source. However, fatty acids and amino acids were readily utilized for growth. L. longa, on the basis of its morphological and physiological properties, could not be identified with any of the established species of Bacillus. It is suggested, therefore, that L. longa be recognized as a new species within the genus Bacillus and that it be renamed Bacillus macroides.  相似文献   

9.
10.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

11.
12.
A Gram-negative bacterium was previously isolated from an oil field in Shizuoka, Japan, and designated strain HD-1. Here we have performed detailed characterization of the strain, and have found that it represents a novel genus. The 16S rRNA sequence of strain HD-1 displayed highest similarity to various uncultured species (86.7-99.7%), along with 86.2-88.2% similarity to sequences from Azospirillum, Methylobacterium, Rhizobium, and Hyphomicrobium, all members of the alpha-Proteobacteria. Phylogenetic analysis revealed that HD-1 represented a deep-branched lineage among the alpha-Proteobacteria. DNA-DNA hybridization analysis with Azospirillum lipoferum and Hyphomicrobium vulgare revealed low levels of similarity among the strains. We further examined the biochemical properties of the strain under aerobic conditions. Among carbon sources, ethanol, n-propanol, n-butanol, and n-tetradecanol were the most preferred, while acetate, propionate, and pyruvate also supported high levels of growth. The strain could also grow on aromatic compounds such as toluene, benzene and phenol, and aliphatic hydrocarbons such as n-octane and n-tetradecane. In contrast, glycerol and various sugars, including glucose, fructose, maltose, and lactose, failed to support growth of HD-1. Under an anaerobic gas phase with butanol as the carbon source, little increase in cell weight was observed with the addition of several possible electron acceptors. As strain HD-1 represents a novel genus in the alpha-Proteobacteria, we designated the strain as Oleomonas sagaranensis gen. nov., sp. nov., strain HD-1.  相似文献   

13.
A Gram-positive, aerobic or facultative anaerobic, motile, spore-forming bacterial strain, designated Gsoil 1638T, was isolated from a soil sample of a ginseng field in Pocheon province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium, utilized a fairly narrow spectrum of carbon sources and tolerated 10% NaCl. The isolate was positive for catalase and oxidase tests but negative for the degradation of macromolecules such as casein, collagen, starch, chitin, CM-cellulose, xylan and DNA. The G + C content of the genomic DNA was 50.7 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were anteiso-C15:0 (44%) and C16:0 (25%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1638T fell within the radiation of the cluster comprising Paenibacillus species and joined Paenibacillus anaericanus DSM 15890T with a bootstrap value of 100%. These two strains shared 99.5% 16S rRNA gene sequence similarity with each other. The phylogenetic distance from any other validly described species within the genus Paenibacillus was less than 96.2%. DNA-DNA relatedness value between strain Gsoil 1638T and its closest phylogenetic neighbor, Paenibacillus anaericanus, was 62%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1638T (= KCTC 13931T = LMG 23406T = CCUG 52472T) was classified in the genus Paenibacillus as the type strain of a novel species, for which the name Paenibacillus ginsengisoli sp. nov. is proposed.  相似文献   

14.
Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

15.
A polyphasic approach was used to establish the taxonomic position of two actinomycetes isolated from a Namibian soil and shown to utilise nitrile compounds as growth substrates. The organisms, strains NAM-BN063AT and NAM-BN063B, had chemical and morphological properties consistent with their assignment to the genus Gordonia. Direct 165 rRNA sequencing studies confirmed the taxonomic position of the strains following the generation of phylogenetic trees using four different algorithms. The strains consistently formed a distinct phylogenetic line within the evolutionary radiation occupied by gordoniae and were most closely related to Gordonia rubropertincta DSM 43197T. DNA:DNA relatedness studies indicated that the two organisms belonged to a genomic species that was readily distinguished from G. rubropertincta. The unique phenotypic profile of the strains sharply separated them from representatives of all of the validly described species of Gordonia. The combination of genotypic and phenotypic data indicates that the two strains should be classified in the genus Gordonia as a new species. The name proposed for this taxon is Gordonia namibiensis, the type strain is NAM-BN063AT (= DSM 44568T = NCIMB 13780T).  相似文献   

16.
Bacteria able to mineralize 100 to 200 ppm of pentachlorophenol (PCP) were isolated by selective enrichment from PCP-contaminated soils from three geographic areas of Minnesota. Although differing somewhat in their responses to various biochemical and biophysical tests, all strains were assigned to the genus Flavobacterium. Five representative strains were examined in detail. All strains metabolized PCP as a sole source of carbon and energy; 73 to 83% of all carbon in the form of [U-14C]PCP was returned as 14CO2, with full liberation of chlorine as chloride. A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others. Guanine-plus-cytosine contents of DNA ranged from 58.8 to 63.8%, and DNA/DNA hybridization studies with total DNA digests suggested substantial genetic homology between strains. All strains were shown to possess an 80- to 100-kilobase plasmid, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases).  相似文献   

17.
Forty-six strains of acetic acid bacteria newly isolated from flowers, fruits, and fermented foods collected in Indonesia were taxonomically studied. They were Gram-negative rods, produced acetic acid from ethanol, oxidized acetate and lactate to CO(2) and H(2)O, and had Q-9 as the major ubiquinone system. On the basis of DNA-DNA similarity, all strains studied, including type strains and reference strains of the genus Acetobacter, were separated into eleven groups (Groups I to XI). Of the 46 isolates, two isolates were included in Group II and identified as Acetobacter pasteurianus, five in Group IV as A. orleanensis, 16 in Group V as A. lovaniensis, five in Group VII as A. indonesiensis, and three in Group VIII as A. tropicalis. The remaining 15 isolates constituted three new groups based on DNA-DNA similarity; four isolates were included in Group IX, two in Group X, and nine in Group XI. No isolates were identified as A. aceti (Group I), A. peroxydans (Group III), and A. estunensis (Group VI). Phylogenetic analysis based on 16S rDNA sequences of representative strains of the Groups indicated belonging to the strains of the genus Acetobacter. On the basis of DNA base composition, DNA-DNA similarity, and 16S rDNA sequences, three new species of the genus Acetobacter are proposed: Acetobacter syzygii sp. nov. for Group IX, Acetobacter cibinongensis sp. nov. for Group X, and Acetobacter orientalis sp. nov. for Group XI. The distribution of Acetobacter strains in Indonesia is discussed in light of isolation sources.  相似文献   

18.
U Lendenmann  M Snozzi    T Egli 《Applied microbiology》1996,62(5):1493-1499
In natural environments heterotrophic microorganisms encounter complex mixtures of carbon sources, each of which is present at a concentration of a few micrograms per liter or even less. Under such conditions no significant growth would be expected if cells utilized only one of the available carbon compounds, as suggested by the principle of diauxic growth. Indeed, there is much evidence that microbial cells utilize many carbon compounds simultaneously. Whereas the kinetics of single-substrate and diauxic growth are well understood, little is known about how microbial growth rates depend on the concentrations of several simultaneously utilized carbon sources. In this study this question was answered for carbon-limited chemostat growth of Escherichia coli fed with mixtures of up to six sugars; the sugars used were glucose, galactose, maltose, ribose, arabinose, and fructose. Independent of the mixture composition and dilution rate tested, E. coli utilized all sugars simultaneously. Compared with growth with a single sugar at a particular growth rate, the steady-state concentrations were consistently lower during simultaneous utilization of mixtures of sugars. The steady-state concentrations of particular sugars depended approximately linearly on their contributions to the total carbon consumption rate of the culture. Our experimental data demonstrate that the simultaneous utilization of mixtures of carbon sources enables heterotrophic microbes to grow relatively fast even in the presence of low environmental substrate concentrations. We propose that the observed reductions in the steady-state concentrations of individual carbon sources during simultaneous utilization of mixtures of carbon sources by heterotrophic microorganisms reflect a general kinetic principle.  相似文献   

19.
Bacteria able to mineralize 100 to 200 ppm of pentachlorophenol (PCP) were isolated by selective enrichment from PCP-contaminated soils from three geographic areas of Minnesota. Although differing somewhat in their responses to various biochemical and biophysical tests, all strains were assigned to the genus Flavobacterium. Five representative strains were examined in detail. All strains metabolized PCP as a sole source of carbon and energy; 73 to 83% of all carbon in the form of [U-14C]PCP was returned as 14CO2, with full liberation of chlorine as chloride. A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others. Guanine-plus-cytosine contents of DNA ranged from 58.8 to 63.8%, and DNA/DNA hybridization studies with total DNA digests suggested substantial genetic homology between strains. All strains were shown to possess an 80- to 100-kilobase plasmid, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases).  相似文献   

20.
Two new haplontic heterothallic species of Metschnikowia were isolated from floricolous insects and flowers. Metschnikowia lochheadii was recovered from insects found in various flowers on the Hawaiian Islands of Kauai and Maui, and from Conotelus sp. (Coleoptera: Nitidulidae) in northwestern Guanacaste Province, Costa Rica. The morphology, physiology, and sexual cycle are typical of the large-spored Metschnikowia species, and the partial ribosomal DNA large subunit (D1D2) sequences suggest that the new species is most closely related to Candida ipomoeae. Metschnikowia lochheadii is nearly indistinguishable from its ascogenous relatives and conjugates freely with Metschnikowia continentalis, forming sterile asci. It also exhibits asymmetric mating with Metschnikowia hawaiiensis. Metschnikowia drosophilae was found in morning glory (Ipomoea sp.) flowers and associated Drosophila bromeliae on Grand Cayman Island. Its nutritional profile is atypical of the genus, being the only species that does not utilize sucrose or maltose as carbon sources, and one of the few that does not utilize melezitose. D1D2 sequences show that Metschnikowia drosophilae is a sister species to Candida torresii, to which it bears considerable similarity in nutritional profile. The type cultures are: Metschnikowia lochheadii, strains UWO(PS)00-133.2 = CBS 8807 (h+, holotype) UWO(PS)99-661.1 = CBS 8808 (h-, isotype); and Metschnikowia drosophilae, strains UWO(PS)83-1135.3 = CBS 8809 (h+, holotype) and UWO(PS)83-1143.1 = CBS 8810 (h-, isotype).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号