首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Inhibition of bovine lung and testicular angiotensin-converting enzyme (ACE) by some well-known ACE inhibitors (lisinopril, captopril, enalapril), new substances (Nalpha-carboxyalkyl dipeptides PP-09, PP-35, and PP-36), and phosphoramidon was investigated using Cbz-Phe-His-Leu and FA-Phe-Phe-Arg (C-terminal analogs of angiotensin I and bradykinin, respectively) as the substrates. The somatic (two domains) and testicular (single domain) isoenzymes demonstrated different kinetic parameters for hydrolysis of these substrates. All of the inhibitors were competitive inhibitors of both ACE isoforms, and the Ki values were substrate-independent. The relative potencies of the inhibitors for both enzymes were: lisinopril > captopril > PP-09 > enalapril > PP-36 > PP-35 > phosphoramidon. The inhibition efficiency of PP-09 was comparable with those of the well-known ACE inhibitors. Captopril was more effectively bound to the somatic ACE (Ki = 0.5 nM) than to the testicular isoform (Ki = 6.5 nM).  相似文献   

2.
Y N Chen  J F Riordan 《Biochemistry》1990,29(46):10493-10498
Inactivation of rabbit lung angiotensin converting enzyme (ACE) by 1-fluoro-2,4-dinitrobenzene (Dnp-F) has been shown to be due primarily to the modification of a tyrosine residue [Bünning, P., Kleeman, S.G., & Riordan, J.F. (1990) Biochemistry (preceding paper in this issue)]. Rabbit testicular ACE is also inactivated by Dnp-F. The specific site of modification has been identified by peptide mapping of tryptic digests of the Dnp-modified protein. Two principal 340-nm-absorbing peaks, not observed with protein modified in the presence of inhibitor, have been characterized. Amino acid and sequence analyses show that these peptides contain two distinct residues that have been selectively modified. The sequence of the major (greater than 90% of the total) modified peptide is YVEFTNK with the Dnp group on tyrosine. The sequence of the second, minor peptide is KVQDLQR with the Dnp group on lysine. Identical peptides were obtained from Dnp-modified rabbit lung ACE. These modified amino acids correspond to residues 200 and 118, respectively, in testicular ACE (human enzyme numbering). Both peptides are present only in the carboxy-terminal half-domain of lung ACE, corresponding to residues 776 and 694, respectively. These results indicate that the Dnp-F sensitive, catalytically functional active site is located in the "testicular" half of lung ACE.  相似文献   

3.
Molecular cloning of human endothelial angiotensin I-converting enzyme (kininase II; EC 3.4.15.1) (ACE) has recently shown that the enzyme contains two large homologous domains (called here the N and C domains), each bearing a putative active site, identified by sequence comparisons with the active sites of other zinc metallopeptidases. However, the previous experiments with zinc or competitive ACE inhibitors suggested a single active site in ACE. To establish whether both domains of ACE are enzymatically active, a series of ACE mutants, each containing only one intact domain, were constructed by deletion or point mutations of putative critical residues of the other domain, and expressed in heterologous Chinese hamster ovary cells. Both domains are enzymatically active and cleave the C-terminal dipeptide of hippuryl-His-Leu or angiotensin I. Moreover, both domains have an absolute zinc requirement for activity, are activated by chloride and are sensitive to competitive ACE inhibitors, and appear to function independently. However, the two domains display different catalytic constants and different patterns of chloride activation. At high chloride concentrations, the C domain hydrolyzes the two substrates tested faster than does the N domain. His-361,365 and His-959,963 are established as essential residues in the N and C domains, respectively, most likely involved in zinc binding, and Glu-362 in the N domain and Glu-960 in the C domain are essential catalytic residues. These observations provide strong evidence that ACE possesses two independent catalytic domains and suggest that they may have different functions.  相似文献   

4.
5.
1. The two isozymes of human angiotensin converting enzyme (ACE; EC 3.4.15.1) have recently been cloned and sequenced. 2. The larger, endothelial isozyme has two highly similar internal domains each bearing a putative catalytic site. In contrast the smaller, testicular isozyme has a single catalytic site corresponding to the C-terminal domain of endothelial ACE and represents the ancestral, non-duplicated form of the gene. 3. Both isozymes are anchored in the plasma membrane by a single hydrophobic transmembrane polypeptide located near the C-terminus, and both are extensively N-glycosylated. 4. The testicular isozyme may also be O-glycosylated. 5. The soluble form of ACE in plasma, seminal fluid and other body fluids appears to be derived from the membrane-bound endothelial isozyme by a post-translational modification. 6. ACE has a complex substrate specificity with peptidyl tripeptidase or endopeptidase action on certain peptides, as well as the classical peptidyl dipeptidase activity. 7. Numerous potent inhibitors of the enzyme have been developed and used successfully in the treatment of hypertension, but some of the observed side effects may be due to inhibition of other zinc metalloenzymes. 8. Both endothelial and testicular ACE are highly conserved between species, indicative of the essential role(s) of the enzyme in blood pressure regulation and other physiological processes.  相似文献   

6.
M R Ehlers  J F Riordan 《Biochemistry》1991,30(29):7118-7126
The blood pressure regulating somatic isozyme of angiotensin-converting enzyme (ACE) consists of two homologous, tandem domains each containing a putative metal-binding motif (HEXXH), while the testis isozyme consists of just a single domain that is identical with the C-terminal half of somatic ACE. Previous metal analyses of somatic ACE have indicated a zinc stoichiometry of 1 mol of Zn2+/mol of ACE and inhibitor-binding studies have found 1 mol of inhibitor bound/mol of enzyme. These and other data have indicated that only one of the two domains of somatic ACE is catalytically active. We have repeated the metal and inhibitor-binding analyses of ACE from various sources and have determined protein concentration by quantitative amino acid analysis on the basis of accurate polypeptide molecular weights that are now available. We find that the somatic isozyme in fact contains 2 mol of Zn2+ and binds 2 mol of lisinopril (an ACE inhibitor) per mol of enzyme, whereas the testis isozyme contains 1 mol of Zn2+ and binds 1 mol of lisinopril. In the case of somatic ACE, the second equivalent of inhibitor binds to a second zinc-containing site as evidenced by the ability of a moderate excess of inhibitor to protect both zinc ions against dissociation. However, active site titration with lisinopril assayed by hydrolysis of furanacryloyl-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either isozyme, indicating that the principal angiotensin-converting site likely resides in the C-terminal (testicular) domain of somatic ACE and that binding of inhibitor to this site is stronger than to the second site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Angiotensin-converting enzyme (ACE) is a dipeptidyl carboxypeptidase that converts angiotensin I into the potent vasoconstrictor angiotensin II. We have used cDNA and genomic sequences to assemble a composite cDNA, ACE.315, encoding the entire amino acid sequence of mouse converting enzyme. ACE.315 contains 4838 base pairs and encodes a protein of 1278 amino acids (147.4 kDa) after removal of a 34-amino acid signal peptide. Within the protein, there are two large areas of homologous sequence, each containing a potential Zn-binding region and catalytic site. These homologous regions are approximately half the size of the whole ACE protein and suggest that the modern ACE gene is the duplicated product of a precursor gene. Mouse ACE is 83% homologous to human ACE in both nucleic acid and amino acid sequence, and like human ACE, contains a hydrophobic region in the carboxyl terminus that probably anchors the enzyme to the cell membrane (Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., John, M., Tregear, G., and Corvol, P. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 9386-9390). Northern analysis of mouse kidney, lung, and testis RNA demonstrates that the testicular isozyme of ACE is encoded by a single, smaller RNA (2500 bases) than the two message sizes found in kidney or lung (4900 and 4150 bases), and that this testicular RNA hybridizes to the 3' portion of ACE.315.  相似文献   

8.
9.
10.
Hydrogen peroxide inactivates the purified human angiotensin-converting enzyme (ACE) in vitro; the inactivating effect of H2O2 is eliminated by an addition of catalase. The lung and kidney ACE are equally sensitive to the effect of hydrogen peroxide. After addition of oxidants (H2O2 alone or H2O2 + ascorbate or H2O2 + Fe2+ mixtures) to the membranes or homogenates of the lung, the inactivation of membrane-bound ACE is far less pronounced despite the large-scale accumulation of lipid peroxidation products. The marked inactivation of ACE in the membrane fraction (up to 55% of original activity) was observed during ACE incubation with a glucose:glucose oxidase:Fe2+ mixture. Presumably the oxidative potential of H2O2 in tissues in consumed, predominantly, for the oxidation of other components of the membrane (e.g., lipids) rather than for ACE inactivation.  相似文献   

11.
We have purified angiotensin-converting enzyme (ACE, EC 3.4.15.1) from rat brain corpus striatum and rat lung. The brain enzyme has Mr 165,000 by sodium dodecyl sulfate gel electrophoresis, whereas the lung enzyme is 175,000. This difference is not an artifact of preparation since mixture of the two tissues prior to purification results in isolation of two proteins with Mr 165,000 and 175,000. Separation of tryptic fragments of 125I-labeled lung and brain ACE by reverse-phase chromatography yields distinct but similar patterns. No differences between the native enzymes are detected in dansyl-tripeptide cleavage specificity, inhibitor profile, immunological properties, sucrose gradient sedimentation, or gel filtration of ACE from the two tissues. However, lung and brain ACE can be differentiated in their ability to cleave amidated peptides. Both lung and brain ACE cleave Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 (substance P) via two pathways. In one pathway, ACE first releases Gly-Leu-Met-NH2 and then dipeptides sequentially from the carboxyl terminus. The other first produces Leu-Met-NH2, and then releases dipeptides to leave substance P 1-5. Lung ACE favors initial tripeptide release 3:1, while the striatal enzyme acts via the two pathways to a similar extent. Lung and striatal ACE also differ in their ability to degrade other amidated peptides. His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH2 (substance K) and bombesin are degraded by striatal but not lung ACE. Physalaemin and luteinizing hormone-releasing hormone are cleaved by both enzymes, while eledoisin, kassinin, thyrotropin-releasing hormone, and substance P 5-11 are not cleaved by either enzyme. Physalaemin is degraded more rapidly by the lung enzyme. The coincidence of an ACE isozyme with substance P and substance K in the descending striatonigral pathway and the unique ability of this isozyme to cleave substance P and substance K suggest that one or both of these peptides is a physiological substrate for striatonigral ACE.  相似文献   

12.
Summary The localization of angiotensin-converting enzyme (ACE) in human tissues has been studied by the PAP-method with the use of monoclonal antibody 9B9 against human lung ACE. The enzyme was detected on the surface of endothelial cells in lung, myocardium, liver, intestine and testis as well as in the epithelial cells of the kidney proximal tubules and intestine. The monoclonal antibody 9B9 did not react with ACE in the epithelial cells of the testis seminiferous tubules. These data suggest that the antibody 9B9 recognizes epitope which is shared by the ACE molecule of endothelial cells and renal and intestinal epithelial cells but is not present in testicular ACE, or is not accessible there to the antibody.  相似文献   

13.
The localization of angiotensin-converting enzyme (ACE) in human tissues has been studied by the PAP-method with the use of monoclonal antibody 9 B9 against human lung ACE. The enzyme was detected on the surface of endothelial cells in lung, myocardium, liver, intestine and testis as well as in the epithelial cells of the kidney proximal tubules and intestine. The monoclonal antibody 9 B9 did not react with ACE in the epithelial cells of the testis seminiferous tubules. These data suggest that the antibody 9 B9 recognizes epitope which is shared by the ACE molecule of endothelial cells and renal and intestinal epithelial cells but is not present in testicular ACE, or is not accessible there to the antibody.  相似文献   

14.
The endothelial angiotensin I-converting enzyme (ACE; EC 3.4.15.1) has recently been shown to contain two large homologous domains (called here the N and C domains), each being a zinc-dependent dipeptidyl carboxypeptidase. To further characterize the two active sites of ACE, we have investigated their interaction with four competitive ACE inhibitors, which are all potent antihypertensive drugs. The binding of [3H] trandolaprilat to the two active sites was examined using the wild-type ACE and four ACE mutants each containing only one intact domain, the other domain being either deleted or inactivated by point mutation of the zinc-coordinating histidines. In contrast with all the previous studies, which suggested the presence of a single high affinity inhibitor binding site in ACE, the present study shows that both the N and C domains of ACE contain a high affinity inhibitor binding site (KD = 3 and 1 X 10(-10) M, respectively, at pH 7.5, 4 degrees C, and 100 mM NaCl). Chloride stabilizes the enzyme-inhibitor complex for each domain primarily by slowing its dissociation rate, as the k-1 values of the N and C domains are markedly decreased (about 30- and 1100-fold, respectively) by 300 mM NaCl. At high chloride concentrations, the chloride effect is much greater for the C domain than for the N domain resulting in a higher affinity of this inhibitor for the C domain. In addition, the inhibitory potency of captopril (C), enalaprilat (E), and lisinopril (L) for each domain was assayed by hydrolysis of Hip-His-Leu. Their Ki values for the two domains are all within the nanomolar range, indicating that they are all highly potent inhibitors for both domains. However, their relative potencies are different for the C domain (L greater than E greater than C) and the N domain (C greater than E greater than L). The different inhibitor binding properties of the two domains observed in the present study provide strong evidence for the presence of structural differences between the two active sites of ACE.  相似文献   

15.
Angiotensin I-converting enzyme (ACE, CD143) has two homologous domains, each having a functional active site. Fine epitope mapping of 8 mAbs to the C-terminal domain of human ACE was carried out using plate precipitation assays, mAbs' cross-reactivity with ACE from different species, site-directed mutagenesis, and antigen- and cell-based ELISAs. Almost all epitopes contained potential glycosylation sites. Therefore, these mAbs could be used to distinguish different glycoforms of ACE expressed in different tissues or cell lines. mAbs 1B8 and 3F10 were especially sensitive to the composition of the N-glycan attached to Asn 731; mAbs 2H9 and 3F11 detected the glycosylation status of the glycan attached to Asn 685 and perhaps Asn1162; and mAb 1E10 and 4E3 recognized the glycan on Asn 666. The epitope of mAb 1E10 is located at the N-terminal end of the C domain, close to the unique 36 amino acid residues of testicular ACE (tACE). Moreover, it binds preferentially to tACE on the surface of human spermatozoa and thus may find application as an immunocontraceptive drug. mAb 4E3 was the best mAb for quantification of ACE-expressing somatic cells by flow cytometry. In contrast to the other mAbs, binding of mAb 2B11 was not markedly influenced by ACE glycosylation or by the cell culture conditions or cell types, making this mAb a suitable reference antibody. Epitope mapping of these C-domain mAbs, particularly those that compete with N-domain mAbs, enabled us to propose a model of the two-domain somatic ACE that might explain the interdomain cooperativity. Our findings demonstrated that mAbs directed to conformational epitopes on the C-terminal domain of human ACE are very useful for the detection of testicular and somatic ACE, quantification using flow cytometry and ELISA assays, and for the study of different aspects of ACE biology.  相似文献   

16.
17.
Angiotensin-converting enzyme (ACE) as a part of the renin angiotensin system (RES) regulates blood pressure and fluid and electrolyte homeostasis, and the enzyme is considered to have a function in reproduction. Reduced enzyme activities have been observed in atrophied testes as a results of zinc and pituitary deficiencies. Vitamin A deficiency causes atrophy of testes. The present study was conducted on three groups of male, 3-wk-old, Wistar rats. After 54 d of the experimental period, testicular weights of the vitamin A-deficient rats (Agroup, allowed free access to vitamin Adeficient diet) was significantly lower than its pair-fed, PF (given restricted amount control diet) and A+ (allowed free access to control diet) groups. Zinc concentrations and both soluble and particulate ACE activities in the testes of vitamin A-deficient rats (Agroup) were significantly lower than the other two groups. No significant differences were observed regarding zinc concentration, particulate ACE, and total ACE activities in the testes of PF and A+ groups. Vitamin A deficiency did not significantly affect the enzyme activity in the lung. From the observations of the present study, we speculate that testicular atrophy in vitamin A deficiency may have resulted from lower zinc concentration and decreased ACE activity in that organ.  相似文献   

18.
Extracellular matrix and soluble plasma proteins generate peptides that regulate biological activities such as cell growth, differentiation and migration. Bradykinin, a peptide released from kininogen by kallikreins, stimulates vasodilatation and endothelial cell proliferation. Various classes of substances can potentiate these biological actions of bradykinin. Among them, the best studied are bradykinin potentiating peptides (BPPs) derived from snake venom, which can also strongly inhibit angiotensin I-converting enzyme (ACE) activity. We identified and synthesized sequences resembling BPPs in the vicinity of potential proteolytic cleavage sites in the collagen XVIII molecule, close to endostatin. These peptides were screened as inhibitors of human recombinant wild-type ACE containing two intact functional domains; two full-length ACE mutants containing only a functional C- or N-domain catalytic site; and human testicular ACE, a natural form of the enzyme that only contains the C-domain. The BPP-like peptides inhibited ACE in the micromolar range and interacted preferentially with the C-domain. The proteolytic activity involved in the release of BPP-like peptides was studied in human serum and human umbilical-vein endothelial cells. The presence of enzymes able to release these peptides in blood led us to speculate on a physiological mechanism for the control of ACE activities.  相似文献   

19.
The zinc metalloenzyme glyoxalase I catalyses the glutathione-dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S-benzyl-glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 A resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the 'glutathione binding domain' found in other glutathione-linked proteins. 3D domain swapping of the N- and C-terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+-dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping.  相似文献   

20.
Somatic angiotensin-converting enzyme (ACE) consists of two homologous domains, each domain bearing a catalytic site. Differential scanning calorimetry of the enzyme revealed two distinct thermal transitions with melting points at 55.3 and 70.5 degrees C. which corresponded to denaturation of C- and N-domains, respectively. Different heat stability of the domains underlies the methods of acquiring either single active N-domain or active N-domain with inactive C-domain within parent somatic ACE. Selective denaturation of C-domain supports the hypothesis of independent folding of the two domains within the ACE molecule. Modeling of ACE secondary structure revealed the difference in predicted structures of the two domains, which, in turn, allowed suggestion of the region 29-133 in amino acid sequence of the N-part of the molecule as responsible for thermostability of the N-domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号