首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced glycation endproducts (AGEs) represent a non-enzymatic posttranslational protein modification. AGEs are generated by a series of chemical reactions of free reducing monosaccharides, such as glucose, fructose or metabolites of the monosaccharide metabolism with amino groups of proteins. After oxidation, dehydration and condensation, stable AGE-modifications are formed. AGE-modified proteins accumulate in all cells and tissues as a normal feature of ageing and correlate with the glucose concentration in the blood. AGEs are increased in diabetic patients and play a significant role in the pathogenesis of most age-related neural disorders, such as Alzheimer’s disease. We examined the role of AGEs on neurite outgrowth of PC12 cells. We induced the formation of AGEs using the reactive carbonyl compound methylglyoxal (MGO) as a physiological metabolite of glucose. We found that AGE-modification of laminin or collagen interfered with adhesion but not with neurite outgrowth of PC12 cells. Furthermore, the AGE-modification of PC12 cell proteins reduced NGF-induced neurite outgrowth. In conclusion, our data show that AGEs negatively influence neural plasticity.  相似文献   

2.
The process of glycation was studied in 12 model systems containing carbohydrates (Glc, Fru) and peptides (Gly-Gly, Gly-Phe, Phe-Gly, Gly-Lys) or acetylated amino acids (Ac-Lys, Ac-Arg) in order to clarify the role of different structural elements of the reacting components. The course of reaction was followed by the changes of the UV spectra of the reaction systems. The results show that the reactivity of the NH2 group correlates with its pKa value. The presence of benzene ring in the amino component accelerates glycation. Strong correlation between the intensity of the fluorescence and the absorption at 325 nm was found for all reaction systems.  相似文献   

3.

Background

The receptor for advanced glycation endproducts (RAGE) is an oncogenic multidisciplinary trans-membranous receptor, which is overexpressed in multiple human cancers. Recently, it has been shown that RAGE is also involved in carcinogenesis and tumor invasion. In this study, we investigated the expression levels and prognostic value of RAGE in primary gastric cancers (GC).

Methods

We investigated RAGE expression in primary GC and paired normal gastric tissue by real-time quantitative RT-PCR (n = 30) and Western blotting analysis (n = 30). Additionally, we performed immunohistochemistry on 180 paraffin-embedded GC specimens, 69 matched normal specimens.

Results

RAGE was overexpressed in GC compared with the adjacent noncancerous tissues (P<0.001), and higher RAGE expression significantly correlated with the histological grade (P = 0.002), nodal status(P = 0.025), metastasis status(P = 0.002), and American Joint Committee on Cancer stage (P = 0.020). Furthermore, upregulation of RAGE expression is an independent prognostic factor in multivariate analysis using the Cox regression model (P = 0.001).

Conclusions

RAGE Overexpression may be a useful marker to predict GC progression and poor prognosis.  相似文献   

4.
5.
Fractures, particularly at the lower extremities and hip, are a complication of diabetes. In both type 1 (T1D) and type 2 diabetes (T2D), fracture risk is disproportionately worse than that predicted from the measurement of bone mineral density. Although an explanation for this discrepancy is the presence of organic matrix abnormalities, it has not been fully elucidated how advanced glycation endproducts (AGEs) relate to bone deterioration at both the macroscopic and microscopic levels. We hypothesized that there would be a relationship between skeletal AGE levels (determined by Raman microspectroscopy at specific anatomical locations) and bone macroscopic and microscopic properties, as demonstrated by the biomechanical measures of crack growth and microindentation respectively. We found that in OVE26 mice, a transgenic model of severe early onset T1D, AGEs were increased by Raman (carboxymethyl-lysine [CML] wildtype (WT): 0.0143 ±0.0005 vs T1D: 0.0175 ±0.0002, p = 0.003) at the periosteal surface. These differences were associated with less tough bone in T1D by fracture mechanics (propagation toughness WT: 4.73 ± 0.32 vs T1D: 3.39 ± 0.24 NM/m1/2, p = 0.010) and by reference point indentation (indentation distance increase WT: 6.85 ± 0.44 vs T1D: 9.04 ± 0.77 μm; p = 0.043). Within T1D, higher AGEs by Raman correlated inversely with macroscopic bone toughness. These data add to the existing body of knowledge regarding AGEs and the relationship between skeletal AGEs with biomechanical indices.  相似文献   

6.
Vitamin A, beyond its biological role, is an alternative choice in treating some life threatening pathologies, for instance leukemia and immunodeficiency. On the other hand, vitamin A therapy at moderate to high doses has caused concern among public health researchers due to the toxicological aspect resulting from such habit. It has been described hepatotoxicity, cognitive disturbances and increased mortality rates among subjects ingesting increased levels of vitamin A daily. Then, based on the previously reported data, we investigated here receptor for advanced glycation endproducts (RAGE) immunocontent and oxidative damage levels in cerebral cortex of vitamin A-treated rats at clinical doses (1,000–9,000 IU/kg day−1). RAGE immunocontent, as well as oxidative damage levels, were observed increased in cerebral cortex of vitamin A-treated rats. Whether increased RAGE levels exert negative effects during vitamin A supplementation it remains to be investigated, but it is very likely that deleterious consequences may arise from such alteration.  相似文献   

7.
8.
Unifying mechanisms for the consequences of aging and chronic diabetes are coming to light with the identification that common to both settings is the production and accumulation of the largely irreversible Advanced Glycation Endproducts (AGEs). AGEs impart multiple consequences in the tissues; a key means by which they exert maladaptive effects is via their interaction with and activation of their chief cell surface receptor, Receptor for AGE or RAGE. Although the time course, rate and extent of AGE generation and accumulation in diabetes and aging may be distinct, unifying outcomes of the ligand-RAGE interaction in the vasculature and heart are linked to upregulation of inflammatory and tissue-destructive mechanisms. Consistent with these concepts, administration of the ligand-binding decoy of RAGE, soluble or sRAGE, suppresses early initiation and progression of atherosclerosis in diabetic mice; suppresses exaggerated neointimal expansion consequent to arterial injury; and mitigates the adverse impact of ischemia/reperfusion injury in the heart. Importantly, the RAGE ligand repertoire upregulated in these settings is not limited to AGEs. The key finding that RAGE was a multi-ligand receptor unified the concept that in diabetes and aging, innate and adaptive inflammatory mechanisms contribute to the pathogenesis of tissue injury. We conclude that antagonism of RAGE may reflect a novel and therapeutically logical and safe target in cardiovascular stress induced by aging and chronic diabetes.  相似文献   

9.
10.
Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOOdependent and autophagy-induced VEGFR2 degradation, which may represent a new mechanism for diabetic angiogenesis impairment.  相似文献   

11.
To date more than 20 glycation products were identified, of which ~15 in the insoluble human skin collagen fraction. The goal of this review is to streamline 30 years of research and ask a set of important questions: in Type 1 diabetes which glycation products correlate best with 1) past mean glycemia 2) reversibility with improved glycemic control, 2) cross-sectional severity of retinopathy, nephropathy and neuropathy and 3) the future long-term risk of progression of micro- and subclinical macrovascular disease. The trio of glycemia related glycation markers furosine (FUR)/fructose-lysine (FL), glucosepane and methylglyoxal hydroimidazolone (MG-H1) emerges as extraordinarily strong predictors of existing and future microvascular disease progression risk despite adjustment for both past and prospective A1c levels. X2 values are up to 25.1, p values generally less than 0.0001, and significance remains after adjustment for various factors such as A1c, former treatment group, log albumin excretion rate, abnormal autonomic nerve function and LDL levels at baseline. In contrast, subclinical cardiovascular progression is more weakly correlated with AGEs/glycemia with X2 values?<?5.0 and p values generally <?0.05 after all adjustments. Except for future carotid intima-media thickness, which correlates with total AGE burden (MG-H1, pentosidine, fluorophore LW-1 and decreased collagen solubility), adjusted FUR and Collagen Fluorescence (CLF) are the strongest markers for future coronary artery calcium deposition, while cardiac hypertrophy is associated with LW-1 and CLF adjusted for A1c. We conclude that a robust clinical skin biopsy AGE risk panel for microvascular disease should include at least FUR/FL, glucosepane and MG-H1, while a macrovascular disease risk panel should include at least FL/FUR, MG-H1, LW-1 and CLF.  相似文献   

12.
13.
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.  相似文献   

14.
Receptor for advanced glycation end product (RAGE)-dependent signaling has been implicated in ischemia/reperfusion injury in the heart, lung, liver, and brain. Because macrophages contribute to vascular perturbation and tissue injury in hypoxic settings, we tested the hypothesis that RAGE regulates early growth response-1 (Egr-1) expression in hypoxia-exposed macrophages. Molecular analysis, including silencing of RAGE, or blockade of RAGE with sRAGE (the extracellular ligand-binding domain of RAGE), anti-RAGE IgG, or anti-AGE IgG in THP-1 cells, and genetic deletion of RAGE in peritoneal macrophages, revealed that hypoxia-induced up-regulation of Egr-1 is mediated by RAGE signaling. In addition, the observation of increased cellular release of RAGE ligand AGEs in hypoxic THP-1 cells suggests that recruitment of RAGE in hypoxia is stimulated by rapid production of RAGE ligands in this setting. Finally, we show that mDia-1, previously shown to interact with the RAGE cytoplasmic domain, is essential for hypoxia-stimulated regulation of Egr-1, at least in part through protein kinase C βII, ERK1/2, and c-Jun NH2-terminal kinase signaling triggered by RAGE ligands. Our findings highlight a novel mechanism by which an extracellular signal initiated by RAGE ligand AGEs regulates Egr-1 in a manner requiring mDia-1.  相似文献   

15.
Russian Journal of Bioorganic Chemistry - It was found earlier that the synthetic fragment corresponding to the 60–76 sequence of the extracellular domain of the receptor for advanced...  相似文献   

16.
Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs.  相似文献   

17.
Klebsiella species is the second most commonly isolated gram-negative organism in sepsis and a frequent causative pathogen in pneumonia. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory responses. We here aimed to investigate the role of RAGE in the host response to Klebsiella (K.) pneumoniae pneumonia and intransally inoculated rage gene deficient (RAGE-/-) and normal wild-type (Wt) mice with K. pneumoniae. Klebsiella pneumonia resulted in an increased pulmonary expression of RAGE. Furthermore, the high-affinity RAGE ligand high mobility group box-1 was upregulated during K. pneumoniae pneumonia. RAGE deficiency impaired host defense as reflected by a worsened survival, increased bacterial outgrowth and dissemination in RAGE-/- mice. RAGE-/- neutrophils showed a diminished phagocytosing capacity of live K. pneumoniae in vitro. Relative to Wt mice, RAGE-/- mice demonstrated similar lung inflammation, and slightly elevated—if any—cytokine and chemokine levels and unchanged hepatocellular injury. In addition, RAGE-/- mice displayed an unaltered response to intranasally instilled Klebsiella lipopolysaccharide (LPS) with respect to pulmonary cell recruitment and local release of cytokines and chemokines. These data suggest that (endogenous) RAGE protects against K. pneumoniae pneumonia. Also, they demonstrate that RAGE contributes to an effective antibacterial defense during K. pneumoniae pneumonia, at least partly via its participation in the phagocytic properties of professional granulocytes. Additionally, our results indicate that RAGE is not essential for the induction of a local and systemic inflammatory response to either intact Klebsiella or Klebsiella LPS.  相似文献   

18.
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function.  相似文献   

19.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. In this study, we examined changes in RAGE immunoreactivity and its protein levels in the gerbil hippocampus (CA1-3 regions) after 5 min of transient global cerebral ischemia. The ischemic hippocampus was stained with cresyl violet, neuronal nuclei (a neuron-specific soluble nuclear antigen) antibody and Fluoro-Jade B (a marker for neuronal degeneration). 5 days after ischemia–reperfusion, delayed neuronal death occurred in the stratum pyramidale of the CA1 region. RAGE immunoreactivity was not detected in any regions of the CA1-3 regions of the sham-group; the immunoreactivity was markedly increased only in the CA1 region from 3 days after ischemia–reperfusion. On the other hand, RAGE immunoreactivity was newly expressed in astrocytes, not in microglia. Western blot analysis showed that RAGE protein level was highest at 5 days post-ischemia. In brief, both the RAGE immunoreactivity and protein level were distinctively increased in astrocytes in the ischemic CA1 region from 3 days after transient cerebral ischemia. These results indicate that the increase of RAGE expression in astrocytes after ischemia–reperfusion may be related to the ischemia-caused activation of astrocytes in the ischemic CA1 region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号