首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have synthesized a novel heteropolymer double-stranded RNA (dsRNA) molecule of defined length and strandedness (dsRNA309) and evaluated its ability to induce cytokine gene expression, activate dsRNA-dependent enzymes, and inhibit both tumor cell growth and virus replication. Unlike the conventionally studied synthetic homopolymer dsRNAs, polyinosinic acid:polycytidylic acid (poly(I-C)) and its mismatched analogue polyinosinic:polycytidylic, uridylic acid (poly(I-C12,U), dsRNA309 possessed restricted biological activity. dsRNA309 was unable to inhibit tumor cell growth or efficiently induce cytokine (i.e. interferon-beta and interleukin-1 alpha) gene expression. However, dsRNA309 was able to inhibit virus replication and activate dsRNA-dependent intracellular enzymes, 2'-5' oligoadenylate synthetase (2'-5' A synthetase) and the dsRNA-activated inhibitor kinase in in vitro assay systems. Overall, dsRNA309 provided a means for examining the mechanisms governing the dsRNA-regulated antiviral and antiproliferative responses, and studies with dsRNA309 demonstrated that the ability of a synthetic dsRNA to activate dsRNA-dependent intracellular enzymes does not necessarily predict the same gene inducing capacity.  相似文献   

2.
3.
Human beta-defensins (hBDs) are antimicrobial peptides that play important roles in host defense against infection, inflammation and immunity. Previous studies showed that micro-organisms and proinflammatory mediators regulate the expression of these peptides in airway epithelial cells. The aim of the present study was to investigate the modulation of expression of hBDs in cultured primary bronchial epithelial cells (PBEC) by rhinovirus-16 (RV16), a respiratory virus responsible for the common cold and associated with asthma exacerbations. RV16 was found to induce expression of hBD-2 and -3 mRNA in PBEC, but did not affect hBD-1 mRNA. Viral replication appeared essential for rhinovirus-induced beta-defensin mRNA expression, since UV-inactivated rhinovirus did not increase expression of hBD-2 and hBD-3 mRNA. Exposure to synthetic double-stranded RNA (dsRNA) molecule polyinosinic:polycytidylic acid had a similar effect as RV16 on mRNA expression of these peptides in PBEC. In line with this, PBEC were found to express TLR3, a Toll-like receptor involved in recognition of dsRNA. This study shows that rhinovirus infection of PBEC leads to increased hBD-2 and hBD-3 mRNA expression, which may play a role in both the uncomplicated common cold and in virus-associated exacerbations of asthma.  相似文献   

4.
5.
TLR activation of innate immunity prevents the induction of transplantation tolerance and shortens skin allograft survival in mice treated with costimulation blockade. The mechanism by which TLR signaling mediates this effect has not been clear. We now report that administration of the TLR agonists LPS (TLR4) or polyinosinic:polycytidylic acid (TLR3) to mice treated with costimulation blockade prevents alloreactive CD8(+) T cell deletion, primes alloreactive CTLs, and shortens allograft survival. The TLR4- and MyD88-dependent pathways are required for LPS to shorten allograft survival, whereas polyinosinic:polycytidylic acid mediates its effects through a TLR3-independent pathway. These effects are all mediated by signaling through the type 1 IFN (IFN-alphabeta) receptor. Administration of IFN-beta recapitulates the detrimental effects of TLR agonists on transplantation tolerance. We conclude that the type 1 IFN generated as part of an innate immune response to TLR activation can in turn activate adaptive immune responses that abrogate transplantation tolerance. Blocking of type 1 IFN-dependent pathways in patients may improve allograft survival in the presence of exogenous TLR ligands.  相似文献   

6.
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. In this study, the cDNA and genomic sequences of Atlantic cod IFN-γ were cloned and found to encode a putative protein containing 194 amino acids with a 24 amino acid signal peptide sequence. The gene is composed of four exons and three introns similar to IFN-γ genes of other vertebrates. The cod IFN-γ showed only 14–29% amino acid identity with other fish IFN-γ and 9–17% identity with IFN-γ from higher vertebrates. However, cod IFN-γ possesses the typical IFN-γ motifs in the C-terminal end of the protein and displays an alpha-helix structure similar to mammalian IFN-γ. The promoter region contains a putative ISRE element indicating up-regulation by type I IFNs and dsRNA. Real time RT-PCR analysis confirmed that IFN-γ gene expression was up-regulated in organs of cod injected with the dsRNA polyinosinic:polycytidylic acid (poly I:C), which is a strong inducer of type I IFNs. Injection of cod with formalin-killed Vibrio anguillarum also increased IFN-γ expression in head kidney, but to a much lesser extent than poly I:C. The gene expression results thus indicate a role for IFN-γ in innate immune response against both virus and bacteria in Atlantic cod.  相似文献   

7.
LPS is the major active agent in the pathogenesis of Gram-negative septic shock. In this report we have studied the influence of concurrent viral infection on the outcome of LPS-induced shock. We find that infection with vesicular stomatitis virus sensitizes mice to LPS at an early time point following infection. Treatment of mice with the chemical IFN inducer, polyinosinic:polycytidylic acid, has a similar effect. This hypersensitivity to LPS correlated with hyperproduction of TNF-alpha in vivo. The cellular and molecular mechanisms underlying this phenomenon were investigated using Ab-depleted and gene-targeted mice. Our results revealed that while NK cell depletion and elimination of IFN-gamma partially protected against the sensitizing effects of vesicular stomatitis virus and polyinosinic:polycytidylic acid, the most striking effect was observed in IFN-alphabetaR-deficient mice. Thus hyperproduction of TNF-alpha was completely abrogated in IFN-alphabetaR-deficient mice, indicating that the principal mechanism underlying rapid virus-induced sensitization to LPS is an IFN-alphabeta-mediated priming of mice for an augmented production of TNF-alpha in response to LPS. This conclusion was further supported by the finding that pretreatment of mice with rIFN-alphabeta mimicked the effect of viral infection. In conclusion, our results reveal a previously unrecognized proinflammatory effect of IFN-alphabeta and point to a new pathway through which viral infection may influence the outcome of concurrent bacterial infection.  相似文献   

8.
ABSTRACT

Polyinosinic-polycytidylic acid (PIC), a double-stranded RNA that induces innate immunity in mammals, is a candidate immunopotentiator for pharmaceuticals. The potency and adverse effects of PIC are strongly correlated with the nucleotide length, and the inability to precisely control the length in PIC production limits its practical use. Length extension during the annealing process is the major factor underlying the lack of control, but tuning the annealing conditions is insufficient to resolve this issue. In this study, we developed a novel method to produce accurate nucleotide length PIC at an industrial scale. The length extension was significantly suppressed by the assembly of multiple short polyinosinic acid molecules with one long polycytidylic acid molecule. A newly developed PIC, uPIC100-400, demonstrated a reproducible length and better storage stability than that of corresponding evenly structured PIC. Human dsRNA receptors exhibited equivalent responsiveness to uPIC100-400 and the evenly structured PIC with the same length.  相似文献   

9.
Poly I:C (polyinosinic acid:polycytidylic acid), an analogue of dsRNA (double-stranded RNA), can lead to apoptosis in human cancer cells and has been used as an adjuvant to treat cancer patients. ATO (arsenic trioxide) is used effectively in the treatment of HCC (hepatocellular carcinoma). We sought to evaluate whether Poly I:C could enhance the potentiation of ATO in HCC. Combination of Poly I:C and ATO synergistically inhibited the growth of SMMC-7721 cells. Treatment with Poly I:C alone or combined with ATO-activated TLR3 (Toll-like receptor 3) pathway, increased ROS (reactive oxygen species) generation and mitochondrial dysfunction. The combined treatment also caused caspase-3, -8, -9 activation. Moreover, the combined therapy caused Bcl-2 and survivin down-regulation, Bax up-regulation and Bid activation. In conclusion, the Poly I:C and ATO combination is potentially a novel and effective approach for the treatment of HCC.  相似文献   

10.
Mx protein is one of several antiviral proteins that are induced by the type I interferons (IFN), IFNalpha and beta, in mammals. In this work induction of a 76 kDa Mx protein by double-stranded RNA (dsRNA) or type I IFN-like activity in Atlantic salmon macrophages, Atlantic salmon fibroblast cells (AS cells) and in Chinook salmon embryo cells (CHSE-214) is reported. Type I IFN-like activity was produced by the stimulation of Atlantic salmon macrophages with the synthetic dsRNA polyinosinic polycytidylic acid (poly I:C). A correlation appeared to exist between Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) induced by IFN in CHSE-214 cells. Several observations in the present work suggest that, as in mammals, the induction of Mx protein by dsRNA in fish cells primarily occurs via induction of type I IFN. First, type I IFN-like activity but not poly I:C, induced Mx protein expression in CHSE-214 cells. These cells apparently lack the ability to produce IFN in response to poly I:C. Second, the putative IFN induced maximal Mx protein expression 48 h earlier than poly I:C in AS cells. Third, the peak expression of Mx protein in macrophages induced by poly I:C occurred after 48 h whereas peak in IFN-like activity was observed by 24 h after addition of poly I:C. The present work supports the notion of using Mx protein as a molecular marker for the production of putative type I IFN in fish.  相似文献   

11.
Poly-d-lysine of high molecular weight enhances interferon induction in mice by the double-stranded complex of polyinosinic and polycytidylic acids and is superior to diethylaminoethyl-dextran in this respect.  相似文献   

12.
13.
14.
dsRNA is a by-product of viral replication capable of inducing an inflammatory response when recognized by phagocyte cells. In this study, we identify group IVA cytosolic phospholipase A2 (cPLA2alpha) as an effector of the antiviral response. Treatment of RAW 264.7 murine macrophage-like cells with the dsRNA analog polyinosinic:polycytidylic acid (poly-IC) promotes the release of free arachidonic acid that is subsequently converted into PGE2 by the de novo-synthesized cyclooxygenase-2 (COX-2) enzyme. These processes are blocked by the selective cPLA2alpha inhibitor pyrrophenone, pointing out to cPLA2alpha as the effector involved. In keeping with this observation, the cPLA2alpha phosphorylation state increases after cellular treatment with poly-IC. Inhibition of cPLA2alpha expression and activity by either small interfering RNA (siRNA) or pyrrophenone leads to inhibition of the expression of the inducible NO synthase (iNOS) gene. Moreover, COX-2-derived PGE2 production appears to participate in iNOS expression, because siRNA inhibition of COX-2 also leads to inhibition of iNOS, the latter of which is restored by exogenous addition of PGE2. Finally, cellular depletion of TLR3 by siRNA inhibits COX-2 expression, PGE2 generation, and iNOS induction by poly-IC. Collectively, these findings suggest a model for macrophage activation in response to dsRNA, whereby engagement of TLR3 leads to cPLA2alpha-mediated arachidonic acid mobilization and COX-2-mediated PGE2 production, which cooperate to induce the expression of iNOS.  相似文献   

15.
The Ras-GTPase activating protein SH3 domain-binding protein 1 (G3BP1) plays a critical role in the formation of classical and antiviral stress granules in stressed and virus-infected eukaryotic cells, respectively. While G3BP1 is known to be phosphorylated at serine residues which could affect stress granule assembly, whether G3BP1 is phosphorylated at tyrosine residues and how this posttranslational modification might affect its functions is less clear. Here, we show using immunoprecipitation and immunoblotting studies with 4G10 antibody that G3BP1 is tyrosine-phosphorylated when cells are stimulated with the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid to mimic viral infection. We further demonstrate via co-immunoprecipitation and inhibitor studies that Bruton’s tyrosine kinase (BTK) binds and phosphorylates G3BP1. The nuclear transport factor 2–like domain of G3BP1 was previously shown to be critical for its self-association to form stress granules. Our mass spectrometry, mutational and biochemical cross-linking analyses indicate that the tyrosine-40 residue in this domain is phosphorylated by BTK and critical for G3BP1 oligomerization. Furthermore, as visualized via confocal microscopy, pretreatment of cells with the BTK inhibitor LFM-A13 or genetic deletion of the btk gene or mutation of G3BP1-Y40 residue to alanine or phenylalanine all significantly attenuated the formation of antiviral stress granule aggregates upon polyinosinic:polycytidylic acid treatment. Taken together, our data indicate that BTK phosphorylation of G3BP1 induces G3BP1 oligomerization and facilitates the condensation of ribonucleoprotein complexes into macromolecular aggregates.  相似文献   

16.
The interferon inducer double-stranded polyinosinic acid and polycytidylic acid (poly I:C) was studied in hamsters experimentally infected with parainfluenza 3 virus. Upper intranasal, deep intranasal, or intraperitoneal treatment of hamsters with poly I:C (100 mug/100- to 120-g animal) 24 hr before an upper respiratory infection significantly reduced the virus yields taken 28 hr after infection. Deep intranasal and intraperitoneal treatment with poly I:C greatly decreased the virus titers in the lungs, as measured 48 hr after a deep lung infection with parainfluenza 3 virus; however, the upper respiratory poly I:C treatment was ineffective.  相似文献   

17.
This study was undertaken to determine the effect of delta 9-tetrahydrocannabinol (delta 9-THC) on polyinosinic:polycytidylic acid [poly(I):poly(C)]-induced, and on herpes simplex virus type 2 (HSV-2)-induced, alpha/beta interferon in the B6C3F1 mouse. Animals were administered delta 9-THC, or the diluent, intraperitoneally for 4 consecutive days or at various time intervals prior to administration of the interferon inducer. Poly(I):poly(C) or HSV-2 was injected intravenously on Day 4. Animals receiving poly(I):poly(C) and treated with delta 9-THC at doses ranging from 5 to 100 mg/kg exhibited significantly lower titers of interferon than mice given poly(I):poly(C) and the diluent. Diminished interferon titers occurred in HSV-2-infected animals treated with delta 9-THC in doses exceeding 15 mg/kg when compared to virus-infected animals given the diluent. This suppression of early interferon persisted through 24 hr.  相似文献   

18.
Type I interferons (IFN alpha and beta) convert vertebrate cells into an antiviral state by inducing expression of proteins that inhibit virus replication. In humans and mice, Mx proteins constitute one family of interferon-induced antiviral proteins. Mx genes have recently been cloned from Atlantic salmon and rainbow trout. Moreover, double-stranded RNA (dsRNA) and type I IFN-like activity have been shown to induce Mx protein in salmonid cells. Chinook salmon embryo cells (CHSE-214 cells) have been suggested to have a defect in the IFN-system because the dsRNA polyinosinic polycytidylic acid (poly I:C) failed to induce an antiviral state in the cells. We have studied this phenomenon more closely in the present work. CHSE-214 cells were either transfected with poly I:C or incubated with poly I:C without transfection reagent. The cells were then studied for Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) infection. The results showed that cells transfected with poly I:C were protected from IPNV infection, whilst cells incubated with poly I:C were not protected. Cells transfected with the double-stranded DNA poly dI:dC were also not protected against IPNV. Mx protein was expressed in CHSE-214 cells upon transfection with poly I:C, but not after incubation with poly I:C alone. Stimulation of CHSE-214 cells with supernatants from cells transfected with poly I:C, induced protection against IPNV, indicating production of type I IFN-like activity. These results suggest that CHSE-214 cells in fact are able to produce type I IFN, but may have defects in the mechanisms mediating uptake of poly I:C or may degrade unprotected poly I:C.  相似文献   

19.
Stimulation of normal human foreskin fibroblasts with platelet-derived growth factor (PDGF) was inhibited by the addition of the synthetic double-stranded RNA polyinosinic-polycytidylic acid (poly-I:C) as measured by incorporation of 3H-thymidine (3H-TdR). Single-stranded polycytidylic or polyinosinic acid had no effect. Double-stranded RNA is an inducer of interferon-beta (IFN-beta) in fibroblasts. On the mRNA level, an expression of IFN-beta 2 but not of IFN-beta 1 was seen after addition of PDGF and/or poly-I:C. The inhibition of PDGF-induced mitogenesis was completely blocked by an antiserum to IFN-beta. Poly-I:C did not interfere with PDGF binding to its receptor, nor did it block protein synthesis, indicating that the inhibition is not due to a nonspecific toxic effect of the double-stranded RNA but rather is mediated by IFN-beta. The present study implies that the IFN-beta system in fibroblasts is a very potent autocrine inhibitory pathway.  相似文献   

20.
Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro- encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context, the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully been used in other species. Here, we report a new ∼125 nm-in-diameter unilamellar liposome-encapsulated immunostimulant cocktail containing crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid [poly (I:C)], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to enter into contact with zebrafish hepatocytes (ZFL cell line) and trout macrophage plasma membranes, being preferentially internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity pathways virtually present in all fish species represents a completely new approach in fish health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号