首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of [14C]glucose from UDP-[14C]glucose to lipid intermediates and glycoproteins was decreased in regenerating rat liver microsomes 24 h after partial hepatectomy. In regenerating liver microsomes, the concentration of free dolichyl phosphate (Dol-P) was significantly decreased. However, it was only about 10% of total Dol-P, which was not significantly changed. On the addition of exogenous Dol-P, the transfer of [14C]glucose to glycoproteins was still decreased, while the decrease of the transfer to lipid intermediates was no longer observed. These results suggest that the glycoprotein synthesis is not regulated by the amount of Dol-P in regenerating liver microsomes. Oligosaccharide obtained from [14C]glucosyl-oligosaccharide-lipid was not distinguishable between regenerating liver and control by paper chromatography. The oligosaccharide transfer to protein in microsomes was compared by using [14C]glucosyl-oligosaccharide-lipid as oligosaccharide donor. The transfer of oligosaccharide to endogenous proteins decreased to 77% of control in regenerating liver and the transfer to exogenously added denatured alpha-lactalbumin decreased to 59% of control. Therefore, it is unlikely that the acceptor capacity of endogenous protein is decreased in regenerating liver. Neither the change in oligosaccharide-lipid under the condition for oligosaccharide transfer assay nor the stability of oligosaccharide transferase was different between regenerating liver and control. These results strongly suggest that the decrease in the activity of the oligosaccharide transferase in microsomes causes the decrease of glycoprotein synthesis in regenerating liver, which was shown in our previous studies.  相似文献   

2.
A comparison has been made of the enzymes catalyzing the transfer of mannose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented with suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not the reverse of the N-acetylglucosamine or mannose trasfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

3.
Rat liver microsomes catalyze the transfer of mannose from GDPmannose to both retinyl phosphate and dolichyl phosphate to form mannosylphosphorylretinol, mannosylphosphoryldolichol and GDP. The two reactions differ in term of reversibility. In fact, a 200-fold isotopic dilution of GDP[14C]mannose by unlabeled GDPmannose causes mannosylphosphoryldolichol labeling to disappear almost completely, while mannosylphosphorylretinol labeling remains at the same level. The same observation can be made if the mannose donor is removed by centrifugation and replaced by excess GDP; again mannosylphosphorylretinol is stable, but mannosylphosphoryldolichol drops down to one-third of its initial level, as expected for, respectively, a non-reversible and a reversible reaction. Placed in an aqueous medium, mannosylphosphorylretinol releases mannose 1-phosphate (beta configuration) whereas it is quite stable when kept in a membranous environment. These results strongly suggest that mannosylphosphorylretinol as soon as it is formed is segregated in such a way that it is no longer available to the back-reaction; the functional consequence of this segregation would be the possibility for mannosylphosphorylretinol to mannosylate some non-polar regions of certain protein chains.  相似文献   

4.
Dolichyl [beta-32P]pyrophosphate ([beta-32P]Dol-P-P) has been prepared chemically to study Dol-P-P phosphatase in calf brain. Calf brain microsomes catalyze the enzymatic release of 32Pi from exogenous [beta-32P]Dol-P-P by a bacitracin-sensitive reaction. [32P]Pyrophosphate was not detected with the water-soluble product even when 1 mM sodium pyrophosphate was added to impede pyrophosphatase activity. A substantial fraction of the Dol-P-P phosphatase activity can be solubilized by treating brain microsomes with 3% Triton X-100. The detergent extracts catalyze the enzymatic release of 32Pi from [beta-32P]Dol-P-P and the conversion of [14C]undecaprenyl pyrophosphate to [14C]undecaprenyl monophosphate. The solubilized Dol-P-P phosphatase activity: 1) is optimal at neutral pH; 2) is inhibited by Mn2+ and stimulated by EDTA; 3) exhibits an apparent Km = 20 microM for Dol-P-P; 4) is competitively inhibited by undecaprenyl pyrophosphate, and 5) is blocked by bacitracin. Solubilized Dol-P-P phosphatase activity differs from Dol-P phosphatase activity present in the same detergent extracts with respect to: 1) thermolability at 50 degrees C, 2) effect of 20 mM EDTA, and 3) sensitivity to phosphate and fluoride ions. These studies describe the chemical synthesis of [beta-32P]Dol-P-P for use in a convenient assay of Dol-P-P phosphatase activity. A procedure for the solubilization of Dol-P-P phosphatase activity from microsomes is presented, and an enzymological comparison indicates that Dol-P-P and Dol-P phosphatase are separate enzymes in calf brain.  相似文献   

5.
Enzymatic glucosylation of dolichol monophosphate (dolichol-P) from UDP-D-[3H]glucose was studied using the microsomal fraction of BHK-21 cells. The reaction product was separated by preparative thin-layer chromatography, further purified by DEAE-cellulose acetate column chromatography, and characterized as dolichyl-beta-D-glucosyl phosphate (Dol-P-Glc). The microsomal fraction of BHK cells catalyzed the incorporation of glucose from UDP-[3H]glucose into ceramides (endogenous and exogenous) and Dol-P; both reactions required Mn2+. Maximal glucosylation of Dol-P was achieved at pH 5.6-5.8 in the presence of a non-ionic detergent, Zonyl A. Glucosylation of exogenous Dol-P, from UDP-Glc, was non-competitively inhibited by exogenous ceramides. Incubation of Dol-P-[3H]Glc or Dol-P-[14C]Glc with liposomes (containing ceramides) and the microsomal fraction of BHK-21 cells resulted in the formation of a radioactive glucolipid which comigrated with the same RF value as glucosylceramide (Glc-Cer) on silica gel thin-layer chromatography. Transfer of [14C]glucose from Dol-P-[14C]Glc to exogenous ceramides was confirmed by double-labeling techniques. The pH dependence for transfer of radio-labeled glucose from Dol-P-[3H]Glc to ceramides was multi-phasic (optima at pH 4.0 and 7.0); glycosylation occurred within 5 min and Zonyl A was absolutely essential for the transfer reaction. These results indicate that Dol-P-Glc may also participate in the synthesis of ceramide hexosides.  相似文献   

6.
R. B. Mellor  J. M. Lord 《Planta》1979,146(2):147-153
Differential and sucrose density gradient centrifugation have shown that the mannosyl transferase present in germinating castor bean endosperm cells which catalyses the synthesis of mannosyl-phosphoryl-polyisoprenol is exclusively located in the endoplasmic reticulum membrane. This intracellular location was confirmed using both ribosome-denuded microsomes isolated in the presence of EDTA and rough-surfaced microsomes isolated in the presence of excess Mg2+ added to maintain ribosome-membrane attachment. Separation of organelles following the incubation of crude particulate fractions with GDP[14C]mannose demonstrated that most of the mannolipid thus formed remained associated with the microsomal fraction. When organelles were isolated from intact tissue which had previously been incubated with GDP[14C]mannose, [14C]glycoprotein was found to be associated with other cellular fractions in addition to the microsomes, in particular the glyoxysomes. The kinetics of radioactive labelling of these organelles suggest that [14C]glycoprotein appears initially in the microsomal fraction and subsequently accumulates in the glyoxysomes. Subfractionation of isolated, [14C]glycoprotein-labelled glyoxysomes established that over 80% of the total radioactivity was present in the membrane, while sodium dodecyl sulphate-polyacrylamide gel electrophoresis of solubilized glyoxysomal membranes showed that the [14C]sugar moiety was associated with several, but not all, constituent polypeptides.Abbreviations ER endoplasmic reticulum - TCA trichloroacetic acid - SDS sodium dodecylsulphate - GDP guanosine diphosphate  相似文献   

7.
Isolated Golgi apparatus membranes from the germinal elements (spermatocytes and early spermatids) of rat testis were examined for their ability to incorporate [14C]mannose and [14C]galactose into glycolipid and glycoprotein fractions. Transfer of mannose from GDP-[14C]mannose into a Lipid I fractions (GPD:MPP mannosyl transferase activity), identified as mannosyl phosphoryl dolichol, showed optimal activity at 1.5 mM manganese and at pH 7.5. Low concentrations of Triton X-100 (0.1%) stimulated transferase activity in the presence of exogenous dolichol phosphate (Dol-P); however, inhibition occurred at Triton X-100 concentrations greater than 0.1%. Maximal activity of this GDP:MPP mannosyl transferase occurred at 25 microM Dol-P. Activity using endogenous acceptor was 2.34 pmole/min/mg, whereas in the presence of 25 microM Dol-P the specific activity was 284 pmole/min/mg, a stimulation of 125-fold. Incorporation of mannose into a Lipid II (oligosaccharide pyrophosphoryl dolichol) and a glycoprotein fraction was also examined. In the absence of exogenous Dol-P, rapid incorporation into Lipid I occurred with a subsequent rise in Lipid II and glycoprotein fractions suggesting precursor-product relationships. Addition of exogenous Dol-P to galactosyl transferase assays showed only a minor stimulation, less than twofold, in all fractions. Over the concentration range of 9.4 to 62.5 micrograms/ml Dol-P, only 1% of radioactive product accumulated in the combined lipid fractions. These observations suggest that the mannose transfer involves Dol-P intermediates and also that spermatocyte Golgi membranes may be involved in formation of the oligosaccharide core as well as in terminal glycosylations.  相似文献   

8.
The sidedness of the biosynthesis of phosphatidylcholine and its transbilayer movement in brain microsomes were investigated. Microsomes were labelled in vitro or in vivo either through Kennedy's pathway or by the base-exchange reaction. The vesicles were treated with phospholipase C under conditions where only the phospholipids present in the external leaflet were hydrolyzed. The incubation of microsomes with CDP-[14C]choline or [14C]choline showed that most of the newly synthesized phosphatidylcholine molecules were localized in the external leaflet. With time a few molecules were transferred into the inner leaflet. When phosphatidylcholine was labelled in vivo by intraventricular injection of [3H]choline the specific activities of the phosphatidylcholine in the outer leaflet were higher than those in the inner leaflet after short times of labelling but became similar after long times of labelling. The results suggest that in brain microsomes the synthesis of phosphatidylcholine through Kennedy's pathway or by the base-exchange reaction takes place on the external leaflet which corresponds to the cytoplasmic one in situ. The transfer of these molecules from the outer leaflet to the inner one is a slow process and the mechanisms that control the transbilayer movement of the phosphatidylcholine seem to be independent of those that control their biosynthesis.  相似文献   

9.
Mouse liver microsomes were shown to be active in the synthesis of sphingomyelin from ceramide and phosphatidylcholine in a reaction independent of CDPcholine. The conversion was not inhibited by calcium chelating reagents, and no evidence for the involvement of phospholipase C activity in the transformation could be adduced. Activity was also demonstrated in monkey liver and heart microsomes. Mouse brain microsomes produced a sphingomyelin analogue, tentatively identified as ceramide phosphorylethanolamine, but not sphingomyelin. Both [14C]ceramide and [G-14]phosphatidylethanolamine were precursors of the brain product, while phosphatidylcholine was inactive. Progress in the partial characterization of the liver enzyme is also described.  相似文献   

10.
Studies with phospholipase C have indicated that two-thirds of the phosphatidylethanolamine of rat liver endoplasmic reticulum is located in the inner leaflet of the membrane bilayer. Phosphatidyl[14C]ethanolamine is synthesised in microsomes incubated with CDP[14C]ethanolamine. Using phospholipase C as a probe we have observed that the labelled phospholipid is initially (1–2 min) concentrated in the ‘outer leaflet’ of the membrane bilayer. The specific activity of this pool of phosphatidylethanolamine was 3.5 times that of the inner leaflet. If, however, the microsomes were opened with 0.4% taurocholate or the French pressure cell to make both sides of the bilayer available to phospholipase C, the phosphatidylethanolamine behaves as a single pool for hydrolysis. On longer incubation, up to 30 min, with CDP[14C]ethanolamine the specific activity of the outer leaflet phosphatidylethanolamine becomes close to that of the inner leaflet. In chase experiments, in which microsomal phosphatidylethanolamine was labelled by incubation with CDP[14C]ethanolamine for 1 min, the reaction stopped by addition of calcium, and the microsomes isolated by centrifugation and reincubated, labelled phosphatidylethanolamine was transferred from the ‘outer leaflet’ to the ‘inner leaflet’, so that both were equally labelled. These observations suggest that phosphatidylethanolamine is synthesised at the cytoplasmic leaflet of the endoplasmic reticulum and subsequently transferred across the membrane to the cisternal leaflet of the bilayer. Transmembrane movement is apparently temperature-dependent and independent of continued synthesis of phosphatidylethanolamine.  相似文献   

11.
Abstract Mannosyl residues from GDP-[14C]Man are transferred into liposomes and onto internal GDP if the liposomal membranes contain dolichyl phosphate and the enzyme GDP-Man: Dol-P mannosyl transferase. Experiments using a mixture of GDP-[14C]Man and [3H]GDP-Man excluded the possibility that the transmembrane translocation of [14C]mannose is due to a GDP-[14C]Manoutside ag GDPinside exchange reaction.  相似文献   

12.
Madin Darby canine kidney (MDCK) cells convert 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine [( 3H]alkylacylGPC) to a product tentatively identified as an ethanolamine-containing phosphoglyceride (PE) (Daniel, L. W., Waite, B. M., and Wykle, R. L. (1986) J. Biol. Chem. 261, 9128-9132). In the present study, analysis of the radiolabeled phosphoglycerides as diradylglycerobenzoate derivatives indicated that [3H] alkylacylGPC was initially converted to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphoethanolamine [( 3H]alkylacylGPE) which was subsequently desaturated to 1-O-[3H]alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine [( 3H]alkenylacylGPE). The conversion of [3H]/[32P]alkyl-lysoGPC to [3H]alkenylacylGPE indicated that base exchange enzymes were not involved in this pathway. A phosphono analog of alkyl-lysoGPC, resistant to phospholipase D hydrolysis and radiolabeled in the 1-O-alkyl chain was readily incorporated, acylated, and subsequently metabolized to [3H]alkylacylGPC and [3H]alkenylacylGPE. Therefore, the involvement of phospholipase D in the conversion pathway was ruled out. The conversion of [3H]alkylacylGPC or its phosphono analog to [3H]alkenylacylGPE was significantly enhanced by the addition of 100 microM ethanolamine to the culture media, suggesting that [3H]alkylacylglycerol is an intermediate in the cytidine-dependent pathway of PE synthesis. MDCK cell cytosol and microsomes contained no detectable phospholipase C activity. However, incubation of microsomes with CMP resulted in the degradation of [3H]alkylacylGPC and accumulation of [3H]alkylacylglycerol. Furthermore, the addition of CDP-ethanolamine to microsomes following preincubation with CMP, resulted in a decrease in [3H]alkylacylglycerol with a concomitant increase in [3H]alkenylacylGPE. Overall, these results suggest that the reverse reaction of choline phosphotransferase may be responsible for the conversion of alkylacylGPC to alkylacylGPE.  相似文献   

13.
Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence, a phospholipase A2 reaction followed by a transacylation reaction. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule. Formation of this intermediate allows [3H]cholesterol to be liberated from the enzyme by exchange with unlabeled cholesterol of plasma lipoproteins. The liberated [3H]cholesterol thereby becomes available for reesterification by LCAT as indicated by its appearance as newly synthesized cholesteryl linoleate.  相似文献   

14.
Rabbit liver microsomes catalyzed mannosyltransfer from GDP-[14C]mannose to free D-mannose resulting in the synthesis of α-1,2-, α-1,3-, and α-1,6-mannosyl-mannose. Whereas formation of α-1,2-mannosyl-mannose was stimulated by the addition of manganese chloride or nickel chloride and was inhibited by EDTA, synthesis of α-1,3-mannosyl-mannose was unaffected by manganese or EDTA and was inhibited by nickel. Formation of α-1,6-mannosyl-mannose appeared to be stimulated by manganese and inhibited by nickel. These results suggest that three different mannosyltransferases were involved in the synthesis of mannosyl-mannose glycosidic linkages in rabbit liver.  相似文献   

15.
Dolichyl mannosyl phosphate and GDPmannose were active substrates for the transfer of mannose to methyl-alpha-D-mannose, p-nitrophenyl-alpha-D-mannose, and free mannose with rat liver microsomal membranes. The products formed during dolichyl mannosyl phosphate incubation with methyl-alpha-D-mannose or with mannose were alpha-linked. The disaccharides formed by incubation of dolichyl mannosyl phosphate or GDPmannose with mannose were identified by paper chromatography and electrophoresis as mannose-alpha-1,2-mannose and mannose-alpha-1,3-mannose. synthesis of each product was dependent on the assay conditions used and was most markedly affected by the presence of detergent. Transfer of mannose from either substrate to form mannose-alpha-1,3-mannose was severely inhibited by Triton X-100.  相似文献   

16.
The incorporation of [14C]-glycerol 3-phosphate and [3H]-palmitate into phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and triacylglycerols by lung microsomes from ventilated and unventilated rabbits was measured. Unventilated lung microsomes showed an impairment of the "de novo" synthesis of phosphatidic acid and, therefore, a general decrease of glycerolipids synthesized from glycerol 3-phosphate. The incorporation of [3H]-palmitate into phosphatidic acid was considerably lower than the incorporation of [14C]-glycerol 3-phosphate by lung microsomes from both ventilated and unventilated rabbits, and the 3H/14C molar ratio did not change during incubation time. These observations suggest the preferential utilization of endogenous fatty acids by acyltransferases involved in the formation of phosphatidic acid. The activities of the enzymes implicated in the synthesis of phosphatidylcholine from lysophosphatidylcholine remained unchanged in lung from both ventilated and unventilated rabbits.  相似文献   

17.
Phospholipase A1, A2 and lysophospholipase activities in microsomes of Novikoff hepatoma host rat liver and regenerating rat liver were compared using 1-[9', 10'-3H2]palmitoyl-2-[1'-14C] linoleoyl-sn-glycero-3-phosphoethanolamine, 1-[1' -3H-]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and 1-[9', 10'-3H2]palmitoyl-sn-glycero-3-phosphoethanolamine as substrates. 1. Microsomes of all three tissues showed two pH dependent peaks of hydrolytic activity, one at pH 7.5 and another at pH 9.5. 2. Phospholipid hydrolytic activity in microsomes from host liver and regenerating liver require Ca2+ for hydrolysis at pH 9.5, but not at pH 7.5. Hepatoma microsomes require Ca2+ for activity at both pH values. 3. Phospholipase A1 activity, stimulated by addition of Triton X-100 to the incubation mixtures, was detected in both host liver and regenerating liver microsomes. There was no evidence of phospholipase A1 activity in hepatoma microsomes. 4. Phospholipase A2 was detected in microsomes of all three tissues using 1-[1'-3H] hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine as a substrate. The activity required calcium and was inhibited by Triton X-100. 5. Lysophospholipase activity was evident in the microsomes from all three tissues. The activity was inhibited by both Ca2+ and Triton X-100. 6. Differences were also detected between host liver and hepatoma microsomal phospholipid hydrolase activities with respect to the effect of increasing protein concentration, apparent Michaelis-Menten constants, and time course of the reaction.  相似文献   

18.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

19.
Incubation of liver microsomes from hibernating ground squirrel with GDP-[14C]mannose and exogenous dolichyl phosphate resulted in the synthesis of dolichyl phosphate [14C]mannose. The mannosyltransferase activity was about 3-fold higher in microsomes from hibernating ground squirrels than in those from active animals. Incubation for 30 min of liver microsomes from hibernating animals with dolichyl pyrophosphate N,N'-diacetyl-[14C]chitobiose and GDP-[14C]mannose led to the synthesis of lipid-[14C]trisaccharide. When liver microsomes were incubated with lipid-[14C]trisaccharide and unlabelled GDP-mannose, lipid-tetra- to heptasaccharides were discovered in the chloroform-methanol (2:1) extract. Since, under the experimental conditions, negligible synthesis of dolichyl phosphate mannose was observed, it was assumed that GDP-mannose was a donor of mannose in the conversion of lipid-trisaccharide into lipid-oligosaccharides containing 2-5 mannose residues.  相似文献   

20.
1. Cholinephosphosphotransferase catalyzes the conversion of diacylglycerol and CDPcholine into phosphatidylcholine and CMP. Incubation of rat lung microsomes containing phosphatidyl[Me-14C]choline with CMP resulted in an increase in water-soluble radioactivity, suggesting that also in rat lung microsomes the cholinephosphotransferase reaction is reversible. 2. Microsomes containing 14C-labeled disaturated and 3H-labeled monoenoic phosphatidylcholine were prepared by incubation of these organelles with [1-14C]palmitate and [9,10-3H2]oleate in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine, ATP, coenzyme A and MgCl2. Incubation of these microsomes with CMP resulted in an equal formation of 14C- and 3H-labeled diacylglycerols, indicating that disaturated and monoenoic phosphatidylcholines were used without preference by the backward reaction of the cholinephosphotransferase. When in a similar experiment the phosphatidylcholine was labeled with [9,10-3H2]palmitate and [1-14C]linoleate, somewhat more 14C- than 3H-labeled diacylglycerol was formed. 3. The backward reaction was used to generate membrane-bound mixtures of [1-14C]palmitate- and [9,10-3H2]oleate- or of [9,10-3H2]palmitate- and [1-14C]linoleate-labeled diacylglycerols. When the microsomes containing diacylglycerols were incubated with CDPcholine, both 3H- and 14C-labeled diacylglycerols were used for the formation of phosphatidylcholine, indicating that there is no absolute discrimination against disaturated diacylglycerols. This observation is in line with our previous findings and indicates that also the CDPcholine pathway may contribute to dipalmitoylphosphatidylcholine synthesis in lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号