首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This review describes the recent knowledge about tightly bound lipids in membrane protein structures and deduces general principles of the binding interactions. Bound lipids are grouped in annular, nonannular, and integral protein lipids. The importance of lipid binding for vertical positioning and tight integration of proteins in the membrane, for assembly and stabilization of oligomeric and multisubunit complexes, for supercomplexes, as well as their functional roles are pointed out. Lipid binding is stabilized by multiple noncovalent interactions from protein residues to lipid head groups and hydrophobic tails. Based on analysis of lipids with refined head groups in membrane protein structures, distinct motifs were identified for stabilizing interactions between the phosphodiester moieties and side chains of amino acid residues. Differences between binding at the electropositive and electronegative membrane side, as well as a preferential binding to the latter, are observed. A first attempt to identify lipid head group specific binding motifs is made. A newly identified cardiolipin binding site in the yeast cytochrome bc(1) complex is described. Assignment of unsaturated lipid chains and evolutionary aspects of lipid binding are discussed.  相似文献   

2.
Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid–protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

3.
ABSTRACT: Co-evolving positions within protein sequences have been used as spatial constraints to develop a computational approach for modeling membrane protein structures.  相似文献   

4.
5.
6.
7.
8.
In this report we highlight the latest trends in phasing methods used to solve alpha helical membrane protein structures and analyze the use of heavy atom metals for the purpose of experimental phasing. Our results reveal that molecular replacement is emerging as the most successful method for phasing alpha helical membrane proteins, with the notable exception of the transporter family, where experimentally derived phase information still remains the most effective method. To facilitate selection of heavy atoms salts for experimental phasing an analysis of these was undertaken and indicates that organic mercury salts are still the most successful heavy atoms reagents. Interestingly the use of seleno‐l ‐methionine incorporated protein has increased since earlier studies into membrane protein phasing, so too the use of SAD and MAD as techniques for phase determination. Taken together this study provides a brief snapshot of phasing methods for alpha helical membrane proteins and suggests possible routes for heavy atom selection and phasing methods based on currently available data.  相似文献   

9.
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.  相似文献   

10.
Lipids in biological membrane fusion   总被引:8,自引:0,他引:8  
The results reviewed suggest that membrane fusion in diverse biological fusion reactions involves formation of some specific intermediates: stalks and pores. Energy of these intermediates and, consequently, the rate and extent of fusion depend on the propensity of the corresponding monolayers of membranes to bend in the required directions.Proteins and peptides can control the bending energy of membrane monolayers in a number of ways. Monolayer lipid composition may be altered by different phospholipases [50, 85, 90], flipases and translocases [4, 50]. Proteins and peptides can change monolayer spontaneous curvature or hydrophobic void energy by direct interaction with membrane lipids [20, 32, 111]. Proteins may also provide some barriers for lipid diffusion in the plane of the monolayer [83, 141]. If diffusion of lipids at some specific membrane sites (e.g., in the vicinity of fusion protein) is somehow hindered, the energy of the bent fusion intermediates would reflect the elastic properties of these particular sites rather than the spontaneous curvature of the whole monolayers. Proteins may deform membranes while bringing them locally into close contact. The alteration of the geometric (external) curvature will certainly change the elastic energy of the initial state and, thus affect the energetic barriers of the formation of the intermediates [143]. In addition, the area and the energy of the stalk can be reduced by preliminary bending of the contacting membranes [111]. The possible effects of proteins and polymers on local elastic properties and local shapes of the membranes have been recently analyzed [22, 39, 45, 63]. These studies may provide a good basis for future development of theoretical models of protein-mediated fusion.  相似文献   

11.
Lipids in endocytic membrane transport and sorting   总被引:1,自引:0,他引:1  
Protein complexes associated to specific membrane lipids and protein-lipid domains contribute to regulate protein sorting and membrane dynamics in the endocytic pathway. It is also becoming apparent that different lipid territories are distributed along the pathway, and that some lipids segregate into specialised microdomains.  相似文献   

12.
13.
Determination of structures and dynamics events of transmembrane proteins is important for the understanding of their function. Analysis of such events requires high-resolution 3D structures of the different conformations coupled with molecular dynamics analyses describing the conformational pathways. However, the solution of 3D structures of transmembrane proteins at atomic level remains a particular challenge for structural biochemists--the need for purified and functional transmembrane proteins causes a 'bottleneck'. There are various ways to obtain 3D structures: X-ray diffraction, electron microscopy, NMR and modelling; these methods are not used exclusively of each other, and the chosen combination depends on several criteria. Progress in this field will improve knowledge of ligand-induced activation and inhibition of membrane proteins in addition to aiding the design of membrane-protein-targeted drugs.  相似文献   

14.
Plasma membrane (PM), primarily from the anterior sperm head, and outer acrosomal membrane (OAM), were isolated from ejaculated bovine spermatozoa, and the major lipid classes were characterized. Whole sperm (WS) lipids were analyzed for comparison. PM was removed by nitrogen cavitation and purified by sucrose density-gradient centrifugation. The OAM was removed by centrifugation through hyperosmotic sucrose and recovered by sucrose density-gradient centrifugation. The PM contained primarily spherical vesicles from the region overlying the OAM and was enriched 9- and 13-fold in 5'-nucleotidase and alkaline phosphatase activity, respectively, compared to the original cavitate. The OAM was recovered as caplike structures with associated ground substance. Protein, phospholipid, and cholesterol (PR, PL, and CH as micrograms/5 x 10(9) sperm) were 300, 467, and 93 for PM and 276, 111, and 25 for OAM, respectively. Corresponding values for WS (mg/5 x 10(9) sperm) were 31.4, 6.63, and 0.72. The PR/PL (w/w) and CH/PL (mol/mol) ratios were 0.66 and 0.38 for PM; 2.48 and 0.26 for OAM; and 4.39 and 0.22 for WS. Cholesterol was the only free sterol detected by gas/liquid chromatography in WS, PM, and OAM, with traces of CH sulfate present in all three preparations. Glycolipid tentatively identified as sulfogalactolipid was detected by thin-layer chromatography (TLC) in PM but not OAM. Phospholipid composition of WS and membranes was determined by TLC. Cardiolipin (3% of total PL) was present in WS only. Choline, ethanolamine, and inositol phosphoglycerides (CP, EP, PI, PIP, PIPP); sphingomyelin (SP); phosphatidylserine (PS); and lysophosphatidylcholine (LPC) were present in WS, PM, and OAM. Approximately 50% of total PL was CP in all preparations; SP was 13% of PL in PM and 17% in OAM (p less than 0.05); EP was 7% of PL in PM and 10% in OAM (p less than 0.05). The differences in composition between PM and OAM is discussed with respect to capacitation and ability of sperm to undergo the acrosome reaction.  相似文献   

15.
Distributions of each amino acid in the trans-membrane domain were calculated as a function of the membrane normal using all currently available alpha-helical membrane protein structures with resolutions better than 4 A. The results were compared with previous sequence- and structure-based analyses. Calculation of the average hydrophobicity along the membrane normal demonstrated that the protein surface in the membrane domain is in fact much more hydrophobic than the protein core. While hydrophobic residues dominate the membrane domain, the interfacial regions of membrane proteins were found to be abundant in the small residues glycine, alanine, and serine, consistent with previous studies on membrane protein packing. Charged residues displayed nonsymmetric distributions with a preference for the intracellular interface. This effect was more prominent for Arg and Lys resulting in a direct confirmation of the positive inside rule. Potentials of mean force along the membrane normal were derived for each amino acid by fitting Gaussian functions to the residue distributions. The individual potentials agree well with experimental and theoretical considerations. The resulting implicit membrane potential was tested on various membrane proteins as well as single trans-membrane alpha-helices. All membrane proteins were found to be at an energy minimum when correctly inserted into the membrane. For alpha-helices both interfacial (i.e. surface bound) and inserted configurations were found to correspond to energy minima. The results demonstrate that the use of trans-membrane amino acid distributions to derive an implicit membrane representation yields meaningful residue potentials.  相似文献   

16.
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.  相似文献   

17.
《Cell》2022,185(7):1143-1156.e13
  1. Download : Download high-res image (338KB)
  2. Download : Download full-size image
  相似文献   

18.
Discriminating outer membrane (OM) proteins from globular proteins is an important task. The structural analysis of β-strands dominating globular (all-β) proteins and OM proteins provides useful insight to distinguish between them. In this work, we analyze the characteristic features of the 20 amino acid residues in all-β and OM proteins. We set up numerical indices for several properties of amino acid residues, such as, conformational parameters, surrounding hydrophobicity, accessible surface area and reduction in accessibility, and inter-residue contacts. We found that all the aromatic residues prefer to be in β-strands of both globular and OM proteins. The surrounding hydrophobicity of aromatic and non-polar amino acid residues in globular proteins is significantly higher than that of OM proteins. The residues Trp, Arg, Phe and Gln show a remarkable difference of reduction in accessibility between all-β globular (βG) and OM proteins. The positively charged residues, Lys and Arg in the membrane part of OM proteins have more number of contacts than globular proteins. Further, the behavior of the 20 amino acid residues in β-strand segments of globular and OM proteins have been discussed. The parameters developed in this work can be used for identifying transmembrane β-strands in OM proteins and for discriminating βG proteins from OM proteins.  相似文献   

19.
Lipids and lipid modifications in the regulation of membrane traffic   总被引:3,自引:0,他引:3  
Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large body of data implicates phosphoinositides in these processes, much less is known about other glycerophospholipids such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing evidence suggests that these lipids may also play an important role, either by mediating protein recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids are believed to be organized in microdomains, recent advances in cellular imaging methods paired with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas regarding the characteristics and putative functions of lipid microdomains and their associated proteins. In fact, the traditional view that membrane proteins may freely diffuse in a large 'sea of lipids' may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have surprisingly complex roles on regulated intracellular transport of a wide range of molecules.  相似文献   

20.
PagP is a bacterial outer membrane protein consisting of an 8 stranded transmembrane β-barrel and an N-terminal α-helix. It is an enzyme which catalyses transfer of a palmitoyl chain from a phospholipid to lipid A. Molecular dynamics simulations have been used to compare the dynamic behaviour in simulations starting from two different structures (X-ray vs. NMR) and in six different environments (detergent micelles formed by dodecyl phosphocholine and by octyl glucoside, vs. four species of phospholipid bilayer). Analysis of interactions between the protein and its environment reveals the role played by the N-terminal α-helix, which interacts with the lipid headgroups to lock the PagP molecule into the bilayer. The PagP β-barrel adopts a tilted orientation in lipid bilayers, facilitating access of lipid tails into the mouth of the central binding pocket. In simulations starting from the X-ray structure in lipid bilayer, the L1 and L2 loops move towards one another, leading to the formation of a putative active site by residues H33, D76 and S77 coming closer together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号