首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sueoka N  Kawanishi Y 《Gene》2000,261(1):53-62
The human genome, as in other eukaryotes, has a wide heterogeneity in the DNA base composition. The evolutionary basis for this heterogeneity has been unknown. A previous study of the human genome (846 genes analyzed) has shown that, in the major range of the G+C content in the third codon position (0.25-0.75), biases from the Parity Rule 2 (PR2) among the synonymous codons of the four-codon amino acids are similar except in the highest G+C range (Sueoka, N., 1999. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238, 53-58.). PR2 is an intra-strand rule where A=T and G=C are expected when there are no biases between the two complementary strands of DNA in mutation and selection rates (substitution rates). In this study, 14,026 human genes were analyzed. In addition, the third codon positions of two-codon amino acids were analyzed. New results show the following: (a) The G+C contents of the third codon position of human genes are scattered in the G+C range of 0.22-0.96 in the third codon position. (b) The PR2 biases are similar in the range of 0.25-0.75, whereas, in the high G+C range (0.75-0.96; 13% of the genes), the PR2-bias fingerprints are different from those of the major range. (c) Unlike the PR2 biases, the G+C contents of the third codon position for both four-codon and two-codon amino acids are all correlated almost perfectly with the G+C content of the third codon position over the total G+C ranges. These results support the notion that the directional mutation pressure, rather than the directional selection pressure, is mainly responsible for the heterogeneity of the G+C content of the third codon position.  相似文献   

2.
Lobry JR  Sueoka N 《Genome biology》2002,3(10):research0058.1-research005814

Background

When there are no strand-specific biases in mutation and selection rates (that is, in the substitution rates) between the two strands of DNA, the average nucleotide composition is theoretically expected to be A = T and G = C within each strand. Deviations from these equalities are therefore evidence for an asymmetry in selection and/or mutation between the two strands. By focusing on weakly selected regions that could be oriented with respect to replication in 43 out of 51 completely sequenced bacterial chromosomes, we have been able to detect asymmetric directional mutation pressures.

Results

Most of the 43 chromosomes were found to be relatively enriched in G over C and T over A, and slightly depleted in G+C, in their weakly selected positions (intergenic regions and third codon positions) in the leading strand compared with the lagging strand. Deviations from A = T and G = C were highly correlated between third codon positions and intergenic regions, with a lower degree of deviation in intergenic regions, and were not correlated with overall genomic G+C content.

Conclusions

During the course of bacterial chromosome evolution, the effects of asymmetric directional mutation pressures are commonly observed in weakly selected positions. The degree of deviation from equality is highly variable among species, and within species is higher in third codon positions than in intergenic regions. The orientation of these effects is almost universal and is compatible in most cases with the hypothesis of an excess of cytosine deamination in the single-stranded state during DNA replication. However, the variation in G+C content between species is influenced by factors other than asymmetric mutation pressure.
  相似文献   

3.
The mean (G + C) composition (51.0%) and standard deviation (+/- 3.8%) of published DNA sequences accounting for 10% of the E. coli genome is in excellent agreement with the principal overall distribution determined by high resolution melting. While differences in base and neighbor characteristics are small and uniform throughout all regions of the genome, it is found that the (G + C) content of sequences varies in segmented fashion within boundaries corresponding to coding (53% G + C) and noncoding (46% G + C) regions; with variances in the latter being six-fold greater than in coding regions. The variance in different regions shows a strong negative dependence on (G + C) content of the region, reflecting the condition that A-T and G-C base pairs are preferred neighbors of A-T and C-G pairs, respectively; with the bias increasing with decreasing (G + C) content. Neighbor analysis indicates the most extreme positive biases occur in AA, TT, GC and CG throughout all regions, but particularly in noncoding regions. Extraordinary numbers of oligomeric strings of (A)n, etc., are the further consequence of this bias. These and other characteristics point to the existence of inherent biases in neighbor frequencies levied during replication or repair, and which reflect, in turn, neighbor influences during mutation. The bias in codon usage noted by Grantham and others is seen here as due, in part, to the adaptation of coding sequences to this microenvironment through selection among synonymous codons so as to preserve inherent neighbor biases.  相似文献   

4.
The relative contribution of mutation and selection to the G+C content of DNA was analyzed in bacterial species having widely different G+C contents. The analysis used two methods that were developed previously. The first method was to plot the average G+C content of a set of nucleotides against the G+C content of the third codon position for each gene. This method was used to present the G+C distribution of the third codon position and to assess the relative neutrality of a set of nucleotides to that of the G+C content of the third codon position. The second method was to plot the intrastrand bias of the third codon position from Parity Rule 2 (PR2), where A=T and G=C. It was found that whereas intragenomic distributions of the DNA G+C content of these bacteria are narrow in the majority of species, in some species the G+C content of the minor class of genes distributes over wider ranges than the major class of genes. On the other hand, ubiquitous PR2 biases are amino acid specific and independent of the G+C content of DNA, so that when averaged over the amino acids, the biases are small and not correlated with the DNA G+C content. Therefore, translation coupled PR2-biases are unlikely to explain the wide range of G+C contents among different species. Considering all data available, it was concluded that the amino acid-specific PR2 bias has only a minor effect, if any, on the average G+C content. In addition, PR2 bias patterns of different species show phylogenetic relationships, and the pattern can be as a taxal fingerprint. Received: 5 November 1998 / Accepted: 1 March 1999  相似文献   

5.
In recent years, the amount of molecular sequencing data from Tetrahymena thermophila has dramatically increased. We analyzed G + C content, codon usage, initiator codon context and stop codon sites in the extremely A + T rich genome of this ciliate. Average G + C content was 38% for protein coding regions, 21% for 5' non-coding sequences, 19% for 3' non-coding sequences, 15% for introns, 19% for micronuclear limited sequences and 17% for macronuclear retained sequences flanking micronuclear specific regions. The 75 available T. thermophila protein coding sequences favored codons ending in T and, where possible, avoided those with G in the third position. Highly expressed genes were relatively G + C-rich and exhibited an extremely biased pattern of codon usage while developmentally regulated genes were more A + T-rich and showed less codon usage bias. Regions immediately preceding Tetrahymena translation initiator codons were generally A-rich. For the 60 stop codons examined, the frequency of G in the end + 1 site was much higher than expected whereas C never occupied this position.  相似文献   

6.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

7.
Asymmetric substitution patterns in the two DNA strands of bacteria   总被引:35,自引:10,他引:25  
  相似文献   

8.
9.
10.
Complete DNA sequences have been determined for the mitochondrial genomes of the crinoids Phanogenia gracilis (15892 bp) and Gymnocrinus richeri (15966 bp). The mitochondrial genetic map of the stalkless feather star P. gracilis is identical to that of the comatulid feather star Florometra serratissima (Scouras, A., Smith, M.J., 2001. Mol. Biol. Evol. 18, 61-73). The mitochondrial gene order of the stalked crinoid G. richeri differs from that of F. serratissima and P. gracilis by the transposition of the nad4L protein gene. The G. richeri nad4L mitochondrial map position is unique among metazoa and is likely a derived feature in this stalked crinoid. Nucleotide compositional analyses of protein genes encoded on the major sense strand confirm earlier conclusions regarding a crinoid-distinctive T over C bias. All three crinoids exhibit high T levels in third codon positions, whereas other echinoderm classes favor A or C in the third codon position. The nucleotide bias is reflected in the relative synonymous codon usage patterns of crinoids versus other echinoderms. We suggest that the nucleotide bias of crinoids, in comparison to other echinoderms, indicates that a physical inversion of the origin of replication has occurred in the crinoid lineage. Evolutionary rate tests support the use of the cytochrome b (cob) gene in molecular phylogenetic analyses of echinoderms. A consensus echinoderm tree was generated based on cytochrome b nucleotide alignments that placed the asteroids as a sister group to a clade containing the ophiuroids and the (echinoids+holothuroids) with the crinoids basal to the rest of the echinoderm classes: [Crinoid,(Asteroid,(Ophiuroid,(Echinoid,Holothuroid)))].  相似文献   

11.
Sueoka N 《Gene》2002,300(1-2):141-154
The intra-strand Parity Rule 2 of DNA (PR2) states that A=T and G=C within each strands. Useful corollaries of PR2 are G/(G+C)=A/(A+T)=0.5, G/(G+A)=C/(C+T)=G+C, G/(G+T)=C/(C+A)=G+C. Here. A, T, G, and C represent relative contents of the four nucleotide residues in a specific strand of DNA, so that A+T+G+C=1. Thus, deviations from the PR2 is a sign of strand-specific (or asymmetric) mutation and/or selection pressures. The present study delineates the symmetric and asymmetric effects of mutations on the intra-genomic heterogeneity of the G+C content in the human genome. The results of this study on the human genome are: (1) When both two- and four-codon amino acids were combined, only slight departures from the PR2 were observed in the total ranges of G+C content of the third-codon position. Thus, the G+C heterogeneity is likely to be caused by symmetric mutagenesis between the two strands. (2) The above result makes the deamination of cytosine due to double-strand breathing of DNA [Mol. Biol. Evol. 17 (2000) 1371] and/or incorporation of the oxidized guanine (8-oxo-guanine) opposite adenine during DNA replication (dGTP-oxidation hypothesis) as the most likely candidates for the major cause of the diversities of the G+C content. (3) Patterns of amino acid-specific PR2-biases detected by plotting PR2 corollaries against the G+C content of third codon position revealed that eight four-codon amino acids can be divided into three types by the second codon letter: (a) C2-type (Ala, Pro, Ser4, and Thr), (b) G2-type (Arg4 and Gly), and (c) T2-type (Leu4 and Val). (4) Most of the asymmetric plot patterns of the above three classes in PR2 biases can be explained by C2→T2 deamination of C2pG3 of C2-type to T2pG3 (T2-type) in both human and chicken. This explains the existence of some preferred codons in human and chicken. However, these biases (asymmetric) hardly contribute to the overall G+C content diversity of the third codon position.  相似文献   

12.
Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.  相似文献   

13.
14.
Compositional distributions in three different codon positions as well as codon usage biases of all available DNA sequences of Buchnera aphidicola genome have been analyzed. It was observed that GC levels among the three codon positions is I>II>III as observed in other extremely high AT rich organisms. B. aphidicola being an AT rich organism is expected to have A and/or T at the third positions of codons. Overall codon usage analyses indicate that A and/or T ending codons are predominant in this organism and some particular amino acids are abundant in the coding region of genes. However, multivariate statistical analysis indicates two major trends in the codon usage variation among the genes; one being strongly correlated with the GC contents at the third synonymous positions of codons, and the other being associated with the expression level of genes. Moreover, codon usage biases of the highly expressed genes are almost identical with the overall codon usage biases of all the genes of this organism. These observations suggest that mutational bias is the main factor in determining the codon usage variation among the genes in B. aphidicola.  相似文献   

15.
Adenine nucleotides have been found to appear preferentially in the regions after the initiation codons or before the termination codons of bacterial genes. Our previous experiments showed that AAA and AAT, the two most frequent second codons in Escherichia coli, significantly enhance translation efficiency. To determine whether such a characteristic feature of base frequencies exists in eukaryote genes, we performed a comparative analysis of the base biases at the gene terminal portions using the proteomes of seven eukaryotes. Here we show that the base appearance at the codon third positions of gene terminal regions is highly biased in eukaryote genomes, although the codon third positions are almost free from amino acid preference. The bias changes depending on its position in a gene, and is characteristic of each species. We also found that bias is most outstanding at the second codon, the codon after the initiation codon. NCN is preferred in every genome; in particular, GCG is strongly favored in human and plant genes. The presence of the bias implies that the base sequences at the second codon affect translation efficiency in eukaryotes as well as bacteria.  相似文献   

16.
17.
The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew.  相似文献   

18.
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein‐coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein‐coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.  相似文献   

19.
T Takano-Shimizu 《Genetics》1999,153(3):1285-1296
I studied the cause of the significant difference in the synonymous-substitution pattern found in the achaete-scute complex genes in two Drosophila lineages, higher codon bias in Drosophila yakuba, and lower bias in D. melanogaster. Besides these genes, the functionally unrelated yellow gene showed the same substitution pattern, suggesting a region-dependent phenomenon in the X-chromosome telomere. Because the numbers of A/T --> G/C substitutions were not significantly different from those of G/C --> A/T in the yellow noncoding regions of these species, a AT/GC mutational bias could not completely account for the synonymous-substitution biases. In contrast, we did find an approximately 14-fold difference in recombination rates in the X-chromosome telomere regions between the two species, suggesting that the reduction of recombination rates in this region resulted in the reduction of the efficacy of selection in D. melanogaster. In addition, the D. orena yellow showed a 5% increase in the G + C content at silent sites in the coding and noncoding regions since the divergence from D. erecta. This pattern was significantly different from those at the orena Adh and Amy loci. These results suggest that local changes in recombination rates and mutational pressures are contributing to the irregular synonymous-substitution patterns in Drosophila.  相似文献   

20.
Variation in GC content, GC skew and AT skew along genomic regions was examined at third codon positions in completely sequenced prokaryotes. Eight out of nine eubacteria studied show GC and AT skews that change sign at the origin of replication. The leading strand in DNA replication is G-T rich at codon position 3 in six eubacteria, but C-T rich in two Mycoplasma species. In M. genitalium the AT and GC skews are symmetrical around the origin and terminus of replication, whereas its GC content variation has been shown to have a centre of symmetry elsewhere in the genome. Borrelia burgdorferi and Treponema pallidum show extraordinary extents of base composition skew correlated with direction of DNA replication. Base composition skews measured at third codon positions probably reflect mutational biases, whereas those measured over all bases in a sequence (or at codon positions 1 and 2) can be strongly affected by protein considerations due to the tendency in some bacteria for genes to be transcribed in the same direction that they are replicated. Consequently in some species the direction of skew for total genomic DNA is opposite to that for codon position 3. Received: 2 February 1998 / Accepted: 15 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号