首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diel vertical migrations of the marine dinoflagellates Gonyaulaxpolyedra Stein and Ceratium furca (Ehr.) Clap, et Lachm. werefollowed in a laboratory tube (2.02 m x 0.25 m) under a 12:12hlight:dark cycle. The effects of temperature stratification,two levels of surface irradiance and nitrogen depletion on patternsof vertical migrations were examined. At temperatures between22–26°C with small temperature gradients, both speciesmigrated at a rate of 0.7 –1.0 m h–1. Steeper thermoclines(ca. 0.8°C 0.1 m–1) with temperatures below ca. 20°Ccaused a marked decrease in swimming speed which resulted inaccumulations of cells in these thermocline regions. Under conditionsof nutrient sufficiency both algae migrated into the surfacelayers at irradiance values of over 1000 µE m–2s–1. Increasing nitrogen depletion caused the downwardmigration of both algae to commence progressively earlier inthe day and before the end of the light period. The earlierdownward migrations enabled a more complete descent throughthe thermocline. Nitrogen depleted cells of Gonyaulax continuedto undertake vertical migrations but avoided high irradiancesthus forming subsurface maxima at irradiance levels close to150 µE m–2 s–1. Ceratium cells which exhaustedboth inorganic nitrogen and phosphorus ceased to migrate accompaniedby a large change in cellular fluorescence.  相似文献   

2.
The structure of the zooplankton biotic community and of copepodpopulation in the coastal area of Terra Nova Bay (Ross Sea,Antarctica) was investigated during the 10th Italian AntarcticExpedition (1994/1995). Zooplankton biotic community consistedmainly of pteropods (Limacina helicina and Clione antarctica),Cyclopoid (Oithona similis), Poecilostomatoid (Oncaea curvata)and Calanoid (Ctenocalanus vanus, Paraeuchaeta antarctica, Metridiagerlachei and Stephos longipes) copepods, ostracods, larvalpolychaetes and larval euphausiids. Zooplankton abundance rangedfrom 48.1 ind m–3 to 5968.9 ind m–3, and copepodabundance ranged from 45.2 ind m–3 to 3965.3 ind m–3.The highest peak of zooplankton abundance was observed between25 m and the surface and was mainly due to the contributionof O. similis, O. curvata and C. vanus. Zooplankton biomassranged from 5.28 mg m–3 to 13.04 mg m–3 dry weight;the maximum value was observed between 25 m and the surface.Total lipid content varied from 216.44 to 460.73 mg g–1dry weight.  相似文献   

3.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

4.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

5.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

6.
Loliun perenne L. (cv.S. 23) was grown on vermiculite in winterin a heated greenhouse for 8 weeks under factorial combinationsof two potassium regimes (nominally 6 parts/106 and 156 parts/106in Hewitt's solution) and three densities of artificially supplementedvisible radiation flux (36.1, 7.3, and 2.2 W m–2). Growthand potassium uptake were studied through the calculation ofvarious growth functions from fitted curves. There was little effect of potassium treatment but the experimentalmaterial responded markedly to light. Leaf-area ratio in thethree treatments showed extreme plasticity in increasing from2–3 x 10–2 through 6 x 10–2 to 8–9 x10–2 m2 g–1 as light intensity decreased. Correspondingdecreases in unit leaf rate, however, caused over-all reductionsin relative growth rate. Specific absorption rates for potassium (AK, dry-weight basis)were strongly reduced at the lower light intensities but alsodisplayed complex ontogenetic drifts. Values of the allometricconstant, k (the ratio of root and shoot relative growth rates),decreased from c. 0.7 at 36.1 W m–2 through c. 0.3 at7.3 W m–2 to a value not significantly different fromzero (P < 0.05) at 2.2 W m–2. In material grown under the two higher light intensities a constantinverse relationship was found between the mass ratio of rootand shoot and the corresponding activity ratio. The resultsconform to this model: Mass ratio = –0.001+45.0 (1/activityratio) where activity ratio is expressed as specific absorptionrate for potassium (in µg g root–1 h–1)/unitshoot rate (rate of increase of whole-plant dry weight per unitshoot dry weight, in mg g shoot–1 h–1). The implicationsof this relationship are discussed.  相似文献   

7.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

8.
The life cycles, biomass and secondary production of three sympatricfreshwater basommatophoran snails, Lymnaea palustris (MÜller),Physa fontinalis Linnaeus and Anisus rotundatus (Poiret) werestudied during two years in a freshwater ditch. L. palustrisexhibited an iteroparous life-cycle whereas the two other speciespresented a semelparous life-cycle, adults died just after oviposition.L. palustris secondary production (dry weight) value was higher(P = 11 298.4 mg 0.1 m–1 yr–1) than those of P.fontinalis (P = 846.3 mg 0.1 m–2 yr–1) and A. rotundatus(P = 1192 mg 0.1 m–2 yr–1). (Received 16 March 1992; accepted 30 June 1992)  相似文献   

9.
Fluxes of diatoms in the Dona Paula Bay, west coast of India   总被引:2,自引:0,他引:2  
Sediment traps were deployed at a station in the Dona PaulaBay to collect sedimenting particles at weekly intervals fromNovember to May during 1995–1997. Sedimented particleswere analysed for total diatom flux, chlorophyll a (Chl a) andparticulate organic carbon (POC). The highest diatom flux wasrecorded in April–May for both the years. Fluxes of diatomsvaried from0.6 x 104 cells m–2 day–1 (November 1995)to 121.47 x 104 cells m–2 day–1 (December 1996).In all, 19 diatom genera were identified in the sedimented material.Navicula, Nitzschia, Pleurosigma, Licmophora, Coscinodiscus,Rhizosolenia and Surirella were the most abundant genera inthe sedimented material throughout the sampling period. Meanflux of POC and diatom carbon was 251 and 0.39 mg C m–2day–1, respectively. The diatom carbon accounted for 0.15%of the POC flux. Mass flux of diatoms showed significant negativecorrelation with the concentration of nitrate and phosphate.This suggests that the nutrient concentration played an importantrole in influencing the sedimentation of diatoms at this coastalstation.  相似文献   

10.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

11.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

12.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

13.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

14.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

15.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

16.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

17.
Primary production was measured for 7 years, using the in situ14C-method in hypertrophic Hartbeespoort Dam, South Africa,to examine the influence of light and water temperature on theupper limit of Microcystis aeruginosa production. Water temperaturesvaried from 11 to >25°C and chlorophyll concentrationsreached 6500 mg m–3. The maximum volumetric rate of production(Amax) was 12->8800 mg C m–3 h–1 with areal productions(A) of 69->3300 mg C m–2 h–1 for euphotic zonedepths of <0.5–8.4 m. The intrinsic parameters of phytoplanktonproduction (, Amax/B, Ik) indicated that the phytoplankton populationwas adapted to high light levels. Both Amax/B and Ik were correlatedwith temperature. Under optimal conditions, , the theoreticalupper limit of A, was calculated to be 2.8 g Cm–2 h–1,while the measured rate was 2.5 g Cm–2 h–1. Measuredareal rates exceeding were overestimated due to methodologicalproblems when working with Microcystis scums. Light and watertemperature interacted to yield high production rates: watertemperature through its direct effect on photosynthetic ratesand indirectly in the formation of diurnal mixed layers; lightindirectly through water temperature and directly through itsattenuation and induction of light-adapted physiology in Microcystis.  相似文献   

18.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

19.
The total number of planktonic bacteria in the upper mixed layerof the Bering Sea during the late spring-early summer periodranged between 1 and {small tilde}4 x 106 ml–1 (biomass10–40mg C m–3). In the northern Pacific, along 47–526N,the corresponding characteristics of the bacterioplankton densityin the upper mixed water layer were: total number 1–2x 106 cells ml–1 and biomass 15–46mg C m–3Below the thermocline at 50–100 m, the density of bacterioplanktonrapidly decreased. At 300 m depth, it stabilized at 0.1–0.2x 106 cells ml–1. The integrated biomass of bacterioplanktonin the open Bering Sea ranged between 1.2 and 3.6 g C m–2(wet biomass 6–18 g m–2) Its production per dayvaried from 2 to 23 mg C m–3 days–1 in the upper0–100 m. The numerical abundance of planktonic ciliatesin this layer was estimated to be from 3 to l0 x 103 cells l–1,and in the northern Pacific from 0.4 to 4.5 x 103 l–2.Their populations were dominated by naked forms of Strombidium,Strombilidium and Tontonia. In some shelf areas, up to 40% ofthe total ciliate population was represented by the symbioticciliate Mesodinium rubrum. The data on the integrated biomassof basic groups of planktonic microheterotrophs are also presented,and their importance in the trophic relationships in pelagiccommunities of subarctic seas is discussed.  相似文献   

20.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号