首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.  相似文献   

2.
Pathways to motor neuron degeneration in transgenic mouse models   总被引:5,自引:0,他引:5  
Robertson J  Kriz J  Nguyen MD  Julien JP 《Biochimie》2002,84(11):1151-1160
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.  相似文献   

3.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

4.
Peripherin, a type III intermediate filament (IF) protein, upregulated by injury and inflammatory cytokines, is a component of IF inclusion bodies associated with degenerating motor neurons in sporadic amyotrophic lateral sclerosis (ALS). We report here that sustained overexpression of wild-type peripherin in mice provokes massive and selective degeneration of motor axons during aging. Remarkably, the onset of peripherin-mediated disease was precipitated by a deficiency of neurofilament light (NF-L) protein, a phenomenon associated with sporadic ALS. In NF-L null mice, the overexpression of peripherin led to early- onset formation of IF inclusions and to the selective death of spinal motor neurons at 6 mo of age. We also report the formation of similar peripherin inclusions in presymptomatic transgenic mice expressing a mutant form of superoxide dismutase linked to ALS. Taken together, these results suggest that IF inclusions containing peripherin may play a contributory role in motor neuron disease.  相似文献   

5.
Neurofilaments (NFs) are prominent components of large myelinated axons. Previous studies have suggested that NF number as well as the phosphorylation state of the COOH-terminal tail of the heavy neurofilament (NF-H) subunit are major determinants of axonal caliber. We created NF-H knockout mice to assess the contribution of NF-H to the development of axon size as well as its effect on the amounts of low and mid-sized NF subunits (NF-L and NF-M respectively). Surprisingly, we found that NF-L levels were reduced only slightly whereas NF-M and tubulin proteins were unchanged in NF-H–null mice. However, the calibers of both large and small diameter myelinated axons were diminished in NF-H–null mice despite the fact that these mice showed only a slight decrease in NF density and that filaments in the mutant were most frequently spaced at the same interfilament distance found in control. Significantly, large diameter axons failed to develop in both the central and peripheral nervous systems. These results demonstrate directly that unlike losing the NF-L or NF-M subunits, loss of NF-H has only a slight effect on NF number in axons. Yet NF-H plays a major role in the development of large diameter axons.  相似文献   

6.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

7.
Peripherin is a type III neuronal intermediate filament detected in motor neuron inclusions of amyotrophic lateral sclerosis (ALS) patients. We previously reported that overexpression of peripherin provokes late-onset motor neuron dysfunction in transgenic mice. Here, we show that peripherin overexpression slows down axonal transport of neurofilament (NF) proteins, and that the transport defect precedes by several months the appearance of axonal spheroids in adult mice. Defective NF transport by peripherin up-regulation was further confirmed with dorsal root ganglia (DRG) neurons cultured from peripherin transgenic embryos. Immunofluorescence microscopy and western blotting revealed that excess peripherin provokes reduction in levels of hyperphosphorylated NF-H species in DRG neurites. Similarly the transport of a green fluorescent protein (GFP)-tagged NF-M, delivered by means of a lentiviral construct, was impaired in DRG neurites overexpressing peripherin. These results demonstrate that peripherin overexpression can cause defective transport of type IV NF proteins, a phenomenon that may account for the progressive formation of ALS-like spheroids in axons.  相似文献   

8.
9.
NF-H has the highest mol. wt. of the three mammalian neurofilament components (NF-L, NF-M, NF-H). In spite of its unusually large mol. wt., estimated to be 200 K by gel electrophoresis, NF-H contains sequences which identify it as an integral intermediate filament (IF) protein in its amino-terminal region. We have isolated and partially characterized a basic, non-α-helical segment located at the amino-terminal end with properties similar to headpieces of other non-epithelial IF proteins. The highly α-helical 40-K fragment excised by chymotrypsin is now identified by the amino acid sequence of a 17-K fragment. This sequence can be unambiguously aligned with the rod region of other IF proteins and covers about half of the presumptive coiled-coil arrays. NF-H and NF-M show 45% sequence identity in this region. The extra mass of NF-H in comparison with most other IF proteins arises from a carboxy-terminal extension thought to be responsible for inter-neurofilament cross-bridges in axons. This autonomous domain has a unique amino acid composition characterized by a high content of proline, alanine and particularly of lysine and glutamic acid. The NF-H tailpiece extension also carries a large number of serine phosphates, which are not evenly distributed, but are restricted to the amino-terminal part. Having now delineated the intermediate filament-type sequences for all three neurofilament proteins it seems very likely that the three components interact via coiled-coil interactions. They all carry unique carboxy-terminal extensions which increase in length from NF-L to NF-H and seem to extend from the filament wall.  相似文献   

10.
《The Journal of cell biology》1993,122(6):1323-1335
We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha- internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.  相似文献   

11.
Abstract: To understand the assembly characteristics of the high-molecular-weight neurofilament protein (NF-H), carboxyl- and amino-terminally deleted NF-H proteins were examined by transiently cotransfecting mutant NF-H constructs with the other neurofilament triplet proteins, low- and middle-molecular-weight neurofilament protein (NF-L and NF-M, respectively), in the presence or absence of cytoplasmic vimentin. The results confirm that NF-H can coassemble with vimentin and NF-L but not with NF-M into filamentous networks. Deletions from the amino-terminus show that the N-terminal head is necessary for the coassembly of NF-H with vimentin, NF-L, or NF-M/vimentin. However, headless NF-H or NF-H from which the head and a part of the rod is removed can still incorporate into an NF-L/vimentin network. Deletion of the carboxyl-terminal tail of NF-H shows that this region is not essential for coassembly with vimentin but is important for coassembly with NF-L into an extensive filamentous network. Carboxyl-terminal deletion into the α-helical rod results in a dominant-negative mutant, which disrupts all the intermediate filament networks. These results indicate that NF-L is the preferred partner of NF-H over vimentin and NF-M, the head region of NF-H is important for the formation of NF-L/NF-H filaments, and the tail region of NF-H is important to form an extensive network of NF-L/NF-H filaments.  相似文献   

12.
Intermediate filaments (IFs) are structural elements of eukaryotic cells with distinct mechanical properties. Tissue integrity is severely impaired, in particular in skin and muscle, when IFs are either absent or malfunctioning due to mutations. Our knowledge on the mechanical properties of IFs is mainly based on tensile testing of macroscopic fibers and on the rheology of IF networks. At the single filament level, the only piece of data available is a measure of the persistence length of vimentin IFs. Here, we have employed an atomic force microscopy (AFM) based protocol to directly probe the mechanical properties of single cytoplasmic IFs when adsorbed to a solid support in physiological buffer environment. Three IF types were studied in vitro: recombinant murine desmin, recombinant human keratin K5/K14 and neurofilaments isolated from rat brains, which are composed of the neurofilament triplet proteins NF-L, NF-M and NF-H. Depending on the experimental conditions, the AFM tip was used to laterally displace or to stretch single IFs on the support they had been adsorbed to. Upon applying force, IFs were stretched on average 2.6-fold. The maximum stretching that we encountered was 3.6-fold. A large reduction of the apparent filament diameter was observed concomitantly. The observed mechanical properties therefore suggest that IFs may indeed function as mechanical shock absorbers in vivo.  相似文献   

13.
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.  相似文献   

14.
The neurofilament light subunit (NF-L) binds to myosin Va (Myo Va) in neurons but the sites of interaction and functional significance are not clear. We show by deletion analysis that motor domain of Myo Va binds to the NF-L rod domain that forms the NF backbone. Loss of NF-L and Myo Va binding from axons significantly reduces the axonal content of ER, and redistributes ER to the periphery of axon. Our data are consistent with a novel function for NFs as a scaffold in axons for maintaining the content and proper distribution of vesicular organelles, mediated in part by Myo Va. Based on observations that the Myo Va motor domain binds to intermediate filament (IF) proteins of several classes, Myo Va interactions with IFs may serve similar roles in organizing organelle topography in different cell types.  相似文献   

15.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

16.
Neurofilaments are the principal intermediate filament type expressed by neurons. They are formed by the co-assembly of three subunits: NF-L, NF-M, and NF-H. Peripherin is another intermediate filament protein expressed mostly in neurons of the peripheral nervous system. In contrast to neurofilaments, peripherin can self-assemble to establish an intermediate filament network in cultured cells. The co-expression of neurofilaments and peripherin is found mainly during development and regeneration. We used SW13 cells devoid of endogenous cytoplasmic intermediate filaments to assess the exact assembly characteristics of peripherin with each neurofilament subunit. Our results demonstrate that peripherin can assemble with NF-L. In contrast, the co-expression of peripherin with the large neurofilament subunits interferes with peripherin assembly. These results confirm the existence of interactions between peripherin and neurofilaments in physiological conditions. Moreover, they suggest that perturbations in the stoichiometry of neurofilaments can have an impact on peripherin assembly in vivo.  相似文献   

17.
The degradation of phosphorylated and dephosphorylated neurofilament proteins by the Ca2+-activated neutral proteinase calpain was studied. Neurofilaments were isolated from bovine spinal cord, dephosphorylated by alkaline phosphatase (from Escherichia coli) and radioiodinated with [125I]-Bolton-Hunter reagent. The radioiodinated neurofilament proteins (untreated and dephosphorylated) were incubated in the presence and absence of calpain from rabbit skeletal muscle, and the degradation rates of large (NF-H), mid-sized (NF-M) and small (NF-L) neurofilament polypeptides were analysed by SDS/polyacrylamide-gel electrophoresis and autoradiography. The degradation of dephosphorylated neurofilament proteins occurred at a higher rate, and to a greater extent, than did that of the phosphorylated (untreated) neurofilament proteins. The dephosphorylated high-molecular-mass neurofilament (NF-HD) was proteolyzed 6 times more quickly than the untreated NF-H. The degradation rate of the NF-M and NF-L neurofilament proteins was also enhanced after dephosphorylation, but less than that of NF-H. This indicates that the dephosphorylation of neurofilament proteins can increase their sensitivity to calpain degradation.  相似文献   

18.
The sequence of the amino-terminal 436 residues of porcine neurofilament component NF-M (apparent mol. wt. in gel electrophoresis 160 kd), one of the two high mol. wt. components of mammalian neurofilaments, reveals the typical structural organization of an intermediate filament (IF) protein of the non-epithelial type. A non-alpha-helical arginine-rich headpiece with multiple beta-turns (residues 1-98) precedes a highly alpha-helical rod domain able to form double-stranded coiled-coils (residues 99-412) and a non-alpha-helical tailpiece array starting at residue 413. All extra mass of NF-M forms, as a carboxy-terminal tailpiece extension of approximately 500 residues, an autonomous domain of unique composition. Limited sequence data in the amino-terminal region of this domain document a lysine- and particularly glutamic acid-rich array somewhat reminiscent of the much shorter tailpiece extension of NF-L (apparent mol. wt. 68 kd), the major neurofilament protein. NF-M is therefore a true intermediate filament protein co-polymerized with NF-L via presumptive coiled-coil type interactions and not a peripherally bound associated protein of a filament backbone built exclusively from NF-L. Along the structurally conserved coiled-coil domains the two neurofilament proteins show only approximately 65% sequence identity, a value similar to that seen when NF-L and NF-M are compared with mesenchymal vimentin. The highly charged and acidic tailpiece extensions of all triplet proteins particularly rich in glutamic acid seem unique to the neurofilament type of IFs. They could form extra-filamentous scaffolds suitable for interactions with other neuronal components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurofilaments are obligate heteropolymers in vivo   总被引:22,自引:12,他引:10       下载免费PDF全文
《The Journal of cell biology》1993,122(6):1337-1350
Neurofilaments (NFs), composed of three distinct subunits NF-L, NF-M, and NF-H, are neuron-specific intermediate filaments present in most mature neurons. Using DNA transfection and mice expressing NF transgenes, we find that despite the ability of NF-L alone to assemble into short filaments in vitro NF-L cannot form filament arrays in vivo after expression either in cultured cells or in transgenic oligodendrocytes that otherwise do not contain a cytoplasmic intermediate filament (IF) array. Instead, NF-L aggregates into punctate or sheet like structures. Similar nonfilamentous structures are also formed when NF-M or NF-H is expressed alone. The competence of NF-L to assemble into filaments is fully restored by coexpression of NF- M or NF-H to a level approximately 10% of that of NF-L. Deletion of the head or tail domain of NF-M or substitution of the NF-H tail onto an NF- L subunit reveals that restoration of in vivo NF-L assembly competence requires an interaction provided by the NF-M or NF-H head domains. We conclude that, contrary to the expectation drawn from earlier in vitro assembly studies, NF-L is not sufficient to assemble an extended filament network in an in vivo context and that neurofilaments are obligate heteropolymers requiring NF-L and NF-M or NF-H.  相似文献   

20.
Genomic clones for the largest human neurofilament protein (NF-H) were isolated, the intron/exon boundaries mapped and the entire protein-coding regions (exons) sequenced. The predicted protein contains a central region that obeys the structural criteria identified for alpha-helical 'rod' domains typically present in all IF protein components: it is approximately 310 amino acids long, shares amino acid sequence homology with other IF protein rod domains and displays the characteristic heptad repeats of apolar amino acids which facilitate coiled-coil interaction. Nevertheless, anomalies are noted in the structure of the NF-H rod which could explain observations of its poor homopolymeric assembly in vitro. The protein segment on the carboxy-terminal side of the human NF-H rod is uniquely long (greater than 600 amino acids) compared to other IF proteins and is highly charged (greater than 24% Glu, greater than 25% Lys), rich in proline (greater than 12%) and impoverished in cysteine, methionine and aromatic amino acids. Its most remarkable feature is a repetitive sequence that covers more than half its length and includes the sequence motif, Lys-Ser-Pro (KSP) greater than 40 times. Together with the recent identification of the serine in KSP as the main target for NF-directed protein kinases in vivo, this repetitive character explains the massive phosphorylation of the NF-H subunit that can occur in axons. The human NF-H gene has three introns, two of which interrupt the protein-coding sequence at identical points to introns in the genes for the two smaller NF proteins, NF-M and NF-L.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号