首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The coordinate regulation of human chorionic gonadotropin (hCG) subunit synthesis by JEG-3 choriocarcinoma cells was studied at the pretranslational level. The responses of the hCG alpha and beta mRNAs were measured during stimulation with the potent cAMP analog 8-bromo-cAMP (8-Br-cAMP) using 32P-labeled hCG alpha and beta cDNA probes. The hCG alpha mRNA (850 bases) and beta mRNA (1050 bases) from JEG-3 cells were identical in size to that of their respective mRNAs from placenta, by Northern blot analysis. After 48 h of stimulation with 2 mM 8-Br-cAMP, production of immunoreactive alpha and beta subunits increased 25- and 52-fold, respectively; corresponding levels of the alpha and beta mRNAs increased 36- and 43-fold, respectively, in a dot blot hybridization assay. Total cellular protein, DNA content, and messenger RNA pools were not altered by treatment with 8-Br-cAMP. The temporal coordination of the expression of the hCG alpha- and beta-subunit genes was examined by comparing the time course of stimulation of the respective mRNAs and the production of immunoreactive subunits. The kinetic responses of the alpha and beta mRNAs differed: the increase in hCG alpha mRNA preceded the increase in hCG beta mRNA, while levels of free alpha subunit and intact hCG increased in parallel with the increase in beta mRNA. hCG alpha mRNA levels increased rapidly between 8 and 24 h after the addition of 8-Br-cAMP, and approached a plateau by 48 h. The levels of hCG beta mRNA increased steadily throughout the 8-48 h period. These results demonstrate that the cAMP analog 8-Br-cAMP differentially regulates hCG subunit biosynthesis in JEG-3 cells at a pretranslational level, and that the stimulation by 8-Br-cAMP in this system appears to be relatively selective for hCG subunits.  相似文献   

2.
Alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, was used to study the effect of polyamine depletion on delayed heat sensitization in Chinese hamster ovary cells (CHO). The cells were treated with 1 or 10 mM DFMO for 8 or 48 h and then given a single heat treatment (43 degrees C, 90 min) at intervals up to 150 h after DFMO addition. Cellular survival, DNA polymerase activity, and polyamine levels were measured. Delayed heat sensitization for cell lethality began 50-55 h (about two cell divisions) after addition of 10 or 1 mM of DFMO for 8 or 48 h, respectively; i.e., cell survival of heated control cells was about 10(-1), but decreased to 10(-4)-10(-5) in heated DFMO-treated cells by 100 h. During this same interval, delayed heat sensitization also was observed for loss of DNA polymerase beta activity (from 20% in cells heated without DFMO treatment to 7% in heated DFMO-treated cells), but none was observed for DNA polymerase alpha activity. Delayed heat sensitization disappeared at 120-130 h after DFMO addition, with survival of heated DFMO-treated cells returning to that for heated control cells. The onset of delayed heat sensitization occurred 30-40 h after intracellular levels of putrescine and spermidine were depleted by more than 95%; however, spermine levels were not lowered, and in some cases even increased. Levels of putrescine and spermidine increased 5-10 h before delayed heat sensitization disappeared. While putrescine reached 25% of control, spermidine exceeded control levels during this time. Furthermore, delayed heat sensitization could be reversed by adding 10(-3) M putrescine or 5 X 10(-5) M spermidine 85-95 h after DFMO addition; in both cases spermidine increased 5-10 h before the decrease in heat sensitization. Finally, neither delayed heat sensitization nor depletion of spermidine was observed in nondividing plateau-phase cells treated with DFMO, although putrescine was depleted. These results lead to the hypothesis that DFMO-induced heat sensitization which occurs after inhibition of the synthesis of putrescine is secondary to the depletion of spermidine in some critical compartment of the cell or to a biochemical alteration. This depletion or biochemical alteration apparently occurs as the cells divide about two times after the intracellular levels of soluble spermidine have been depleted.  相似文献   

3.
4.
The multiplication of A. culbertsoni in the peptone medium was not inhibited by 10-20 mM concentration of alpha-difluoromethyl ornithine (DMFO) while a partial and transient inhibition of cell multiplication was observed by 10-20 mM DFMO in proteose peptone, yeast extract, glucose (PYG) medium. Ornithine decarboxylase (ODC) activity in the cells and cell free extracts was strongly inhibited by DFMO, excluding enzyme refractoriness and impermeability of cells for DFMO as the possible causes of DFMO resistance. The presence of polyamines in the peptone and PYG media as well as uptake of polyamines by the amoebae has been demonstrated. The growth and multiplication of A. culbertsoni in chemically defined medium was not affected by 1-5 mM DFMO while 10-20 mM DMFO yielded partial inhibition. A lowering of diaminopropane levels and enhancement of spermidine levels was observed in DFMO inhibited cells and level of ODC was drastically reduced in the inhibited cultures. Uptake of polyamines from the growth media may partly account for DFMO resistance of A. culbertsoni. Alternative mechanisms for DFMO resistance are indicated.  相似文献   

5.
6.
为了探讨人绒毛膜促性腺激素(hCG)对绒并且吕细胞侵袭性相关基因表达的影响作用。采用逆转录多聚酶链反应(RT-PCR)检测方法,观察了不同浓度hCG不同处理时间对JEG-3绒癌细胞系表达基质金属蛋白酶(MMP-2和MMP-8)的影响。结果显示,绒癌细胞系JEG-3表达MMP-2和MMP-8;分别用0、50、500、5000、25000IU/LhCG处理48h后,JEG-3细胞中MMP-2mRNA的含量无明显变化。MMP-8mRNA的表达则被诱导,并随hCG作用浓度增高而增强,进一步研究处理时间对MMP表达的影响。结果发现经25000IU/LhCG处理的JEG-3细胞,MMP-8的表达随处理时间的延长逐渐增强,而MMP-2的表达则在第6h被显著诱导后逐渐降低,以上结果提示,hCG可诱导绒癌细胞系JEG-3中MMP-2和MMP-8两种基质金属蛋白酶的表达,并因此可能对绒癌细胞系的侵袭性具有影响作用。然而hCG对这两者表达的影响规律并不完全一致。  相似文献   

7.
Expression of the human chorionic gonadotropin (hCG)-alpha gene in placental trophoblasts is markedly stimulated by cAMP, a property preserved in a reporter plasmid containing its cAMP response elements (CREs) linked to the chloramphenicol acetyltransferase coding sequence (CRE alpha CAT). In search of a potential physiologic regulator of hCG gene expression via cAMP, we found that JEG-3 syncytial trophoblast cells have specific binding sites for vasoactive intestinal peptide (VIP) with dissociation constant of 1 nM. VIP maximally increased the transient expression of CRE alpha CAT and the expression of endogenous hCG-alpha mRNA in JEG-3 cells by 4- and 9-fold, respectively. Exposure of JEG-3 cells to 30 nM VIP increased cAMP levels 60-fold after 10-30 min, but cAMP rapidly declined thereafter. As a consequence of this desensitization, the effect of VIP on stimulation of both CRE alpha CAT and endogenous hCG-alpha and hCG-beta mRNA levels more closely resembled that of forskolin or 8-br-cAMP at time points much less than 24 h. Moreover, transient exposure to 8-br-cAMP was much less effective than 24 h of continuous incubation on CRE alpha CAT activity. We conclude that VIP rapidly increases cAMP content and activates hCG-alpha gene expression in JEG-3 cells, but sustained elevations in cAMP are necessary for maximal accumulation of this CRE-regulated gene product.  相似文献   

8.
Interferon (alpha + beta) given to C3H/HeN mice intraperitoneally inhibited increases in the activities of adenylate cyclase and ornithine decarboxylase after partial hepatectomy. The inhibition of ornithine decarboxylase was prevented by administration of dibutyryl cAMP. Core (2'-5')oligo(adenylate), i.e. A2'p5'A2'p5'A or (A2'p)2A, as well as interferon inhibited the increases in these two enzymes caused by partial hepatectomy. The inhibition by (A2'p)2A of ornithine decarboxylase activity was reversed by dibutyryl cAMP. These results suggested that the activity of interferon was similar to that of (A2'p)2A and that the inhibition of ornithine decarboxylase induction caused by these agents resulted from the inhibition of adenylate cyclase activity.  相似文献   

9.
We studied the effect of the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA), which activates protein kinase-C, on porcine granulosa cells in culture. PMA as well as cholera toxin, forskolin, and hCG increased cAMP accumulation. PMA further augmented the elevation in cAMP accumulation induced by cholera toxin, forskolin, and hCG. In the same cell culture model, hCG induced a time-dependent increase in the 3 beta-hydroxy-5-ene steroid dehydrogenase (3 beta HSD) mRNA levels with a maximal 3-fold stimulation obtained at 8-16 h of incubation with 1 IU hCG/ml. PMA inhibited the increase in 3 beta HSD mRNA levels induced by hCG in a dose-dependent manner. The phorbol ester also inhibited the increase in 3 beta HSD mRNA levels stimulated by LH as well as cholera toxin and forskolin and the cAMP analogs (Bu)2cAMP and 8-bromo-cAMP. Activation of protein kinase-C by mezerein similarly inhibited hCG stimulation of 3 beta HSD mRNA levels. The present data indicate that activation of the protein kinase-C pathway induces generation of cAMP, but causes a near-complete inhibition of the stimulatory effects of hCG, LH, forskolin, cholera toxin, and cAMP analogs on 3 beta HSD mRNA levels in porcine granulosa cells in culture.  相似文献   

10.
Both mouse interferon-beta (MuIFN-beta) and the inhibitor of ornithine decarboxylase (ODC), alpha-difluoromethyl ornithine (DFMO), inhibited the differentiation of mouse 3T3-L1 fibroblasts into adipocytes in a dose-dependent manner. DFMO and MuIFN-beta added together to cultures that were induced to differentiate produced an additive anti-differentiation effect. In contrast to this additive cellular effect, DFMO reduced the antiviral activity of MuIFN-beta in both undifferentiated and differentiated cells; DFMO alone had no detectable effect on replication of encephalomyocarditis virus. Putrescine, the product of ornithine decarboxylation, when added to 3T3-L1 cultures (i) enhanced differentiation, (ii) reversed completely the inhibition of differentiation by DFMO, but (iii) had little effect on the antidifferentiation effect of MuIFN-beta. Polyamine content changed four-fold or less in cultures treated with 0.5 mM DFMO and less than two-fold in cultures treated with 100 IU/ml MuIFN-beta for seven days. Thus, it appears not only that MuIFN-beta and DFMO inhibit differentiation of 3T3-L1 cells by different mechanisms but also that the antiviral action of IFN does not involve the regulation of polyamine metabolism by ornithine decarboxylase.  相似文献   

11.
Difluoromethylornithine (DFMO), a selective inhibitor of ornithine decarboxylase, was used to probe the possible role of polyamines in the regulation of proliferation and steroidogenic activities of bovine adrenocortical cells in primary culture. The presence of DFMO in the culture medium not only suppressed the polyamine increase observed in proliferating control cells but resulted in a rapid depletion of the putrescine and spermidine cellular content, while spermine remained at a basal level. The proliferation of DFMO-treated cells was rapidly blocked and resumed at a normal rate upon addition of putrescine to the medium. DFMO-treated cells showed an impaired steroidogenic response to ACTH while adenylate cyclase stimulation was not altered. Thus, while ornithine decarboxylase and polyamines may be required for adrenocortical cell replication, deprivation of these compounds did not facilitate the expression of differentiated cell functions, as observed with granulosa cells.  相似文献   

12.
Treatment of mouse lymphoma S49 cells with D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, depleted cellular polyamine levels and stopped cell growth. The cells were arrested predominantly in G1. Thus, polyamine depletion may lead to a regulatory growth arrest in S49 cells. We tested two hypotheses regarding the relationship of growth arrest mediated by polyamine limitation to that mediated by cyclic AMP (cAMP). The hypothesis that cAMP-induced arrest results from polyamine depletion is not tenable, because the arrest could not be reversed by addition of exogenous polyamines, and because cellular polyamine levels do not drop in dibuturyl cyclic AMP (Bt2cAMP)-arrested cells. The hypothesis that polyamine-mediated growth arrest is effected via modulation of cAMP levels or cAMP-dependent protein kinase activity was also shown to be incorrect, because a S49 variant deficient in cAMP-dependent protein kinase was arrested by DFMO. The activities of the polyamine-synthesizing enzymes ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMD) are both reduced in Bt2cAMP-treated cells to about 10% of that in control populations, as shown previously. DFMO diminishes ODC activity and augments SAMD activity in both untreated and Bt2cAMP-treated cells, leading to polyamine depletion in both cases.  相似文献   

13.
Influence of DL-alpha-difluoromethylornithine (DFMO) treatment on the growth kinetics, labelling index, extra- and intracellular polyamine and nucleotide concentrations was monitored in cultured P388 leukemia cells. A substantial decrease of cell proliferation was observed when the cells were continuously treated with 1-5 mM DFMO. Depletion of cellular polyamines, mostly of putrescine and spermidine, was seen with a concomitant but delayed increase of spermidine and spermine levels in the culture medium. Changes of DNA content and of labelling index of untreated and treated cells seem to indicate that DFMO arrested cells in G1/S transition. The results presented here provide additional in vitro evidence on the characteristic changes in the metabolic imbalance of ornithine in tumor cells induced by DFMO via inhibition of ornithine decarboxylase and ornithine carbamoyl transferase activities.  相似文献   

14.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

15.
Difluoromethylornithine (DFMO) is a specific and irreversible inhibitor of ornithine decarboxylase, an enzyme which catalyzes the first step in the biosynthetic pathway of the polyamines. We tested the effect of DFMO on the growth of Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis. Growth of G. lamblia was inhibited by DFMO at concentrations of greater than or equal to 1.25 mM. Culture doubling time increased with increasing DFMO concentration. Growth inhibition was reversed if spermidine was added within 53 h of addition of DFMO; no growth was observed if spermidine was added later, indicating eventual parasite death. The growth of E. histolytica and T. vaginalis, two unrelated mucosal-dwelling parasites of humans, was not inhibited by 20 mM DFMO. These studies indicate that polyamine biosynthesis from ornithine is required for growth of G. lamblia.  相似文献   

16.
We studied the effects of the ornithine decarboxylase inhibitors (2R,5R)-6-heptyne-2,5-diamine (R,R,-MAP) and alpha-difluoromethylornithine (DFMO) on cell proliferation and polyamine metabolism in 9L rat brain tumour cells. Treatment with 5 microM R,R-MAP inhibited cell proliferation to the same extent as did treatment with 1 mM DFMO. Both inhibitors depleted putrescine and spermidine concentrations to less than detectable levels within 24 h and 48 h of drug treatment, respectively; spermine levels were not affected significantly by either inhibitor. The effects of DFMO on 9L cell cycle kinetics were similar to those of R,R-MAP. During the first 3 days of treatment, both drugs caused an accumulation of cells in G1 and a reduction of cells in S phase, as compared with control cells with a slowing in the rate of cell cycle traverse. In cultures seeded at low (1 x 10(5)), medium (5 x 10(5)), or high (2 x 10(6)) cell densities in a 25 cm2 flask, inhibition of cell proliferation and polyamine depletion by both R,R-MAP and DFMO was more pronounced at the lower densities relative to the density-matched control cells. Thus, R,R-MAP was a more potent inhibitor of ornithine decarboxylase than was DFMO in 9L cells, and the inhibitory effects of both compounds on cell proliferation and polyamine biosynthesis were greater in actively proliferating cells.  相似文献   

17.
The interaction between beta and alpha adrenergic agonists on regulation of cockerel aortic ornithine decarboxylase (ODC) activity was examined. The beta adrenergic agonist isoproterenol both reduced basal aortic ODC activity and prevented induction of the decarboxylase by the alpha adrenergic agonist methoxamine. 3-Isobutyl-1- methylxanthine (IBMX) similarly reduced basal ODC activity and blocked induction of the enzyme by methoxamine. When given ten minutes before or after methoxamine, isoproterenol prevented aortic ODC induction, but not large sustained increases in blood pressure evoked by the alpha adrenergic agonist. In contrast, when injected three hours after methoxamine, isoproterenol had no effect on already elevated levels of enzyme activity. Addition of isoproterenol (10(-7)M), IBMX (1 mM) or dibutyryl cAMP (2.5 mM) to isolated aortic segments cultured in minimal salts-glucose media evoked decreases in basal levels of ODC activity resembling those observed in the intact animal. These results suggest that the balance between alpha and beta adrenergic stimulation may be an important feature of the regulation of polyamine biosynthesis in artery wall cells.  相似文献   

18.
Abstract We studied the effects of the ornithine decarboxylase inhibitors (2R,5R)-6-heptyne-2,5-diamine (R,R,-MAP) and α-difluoromethylornithine (DFMO) on cell proliferation and polyamine metabolism in 9L rat brain tumour cells. Treatment with 5 μM R,R-MAP inhibited cell proliferation to the same extent as did treatment with 1 mM DFMO. Both inhibitors depleted putrescine and spermidine concentrations to less than detectable levels within 24 h and 48 h of drug treatment, respectively; spermine levels were not affected significantly by either inhibitor. The effects of DFMO on 9L cell cycle kinetics were similar to those of R,R-MAP. During the first 3 days of treatment, both drugs caused an accumulation of cells in G1 and a reduction of cells in S phase, as compared with control cells with a slowing in the rate of cell cycle traverse. In cultures seeded at low (1 × 105), medium (5 × 105), or high (2 × 106) cell densities in a 25 cm2 flask, inhibition of cell proliferation and polyamine depletion by both R,R-MAP and DFMO was more pronounced at the lower densities relative to the density-matched control cells. Thus, R,R-MAP was a more potent inhibitor of ornithine decarboxylase than was DFMO in 9L cells, and the inhibitory effects of both compounds on cell proliferation and polyamine biosynthesis were greater in actively proliferating cells.  相似文献   

19.
We previously showed that ornithine was mainly transported via cationic amino acid transporter (CAT)-1 in human retinal pigment epithelial (RPE) cell line, human telomerase RT (hTERT)-RPE, and that CAT-1 was involved in ornithine cytotoxicity in ornithine--aminotransferase (OAT)-deficient cell produced by a OAT specific inhibitor, 5-fluoromethylornithine (5-FMO). We showed here that CAT-1 mRNA expression was increased by ornithne in OAT-deficient RPE cells, which was reversed by an inhibitor of ornithine decarboxylase (ODC), -difluoromethylornithine (DFMO). Polyamines, especially spermine, one of the metabolites of ODC, also enhanced the expression of CAT-1 mRNA. ODC mRNA expression was also increased by ornithine and polyamines, and gene silencing of ODC by siRNA decreased ornithine transport activity and its cytotoxicity. In addition, the mRNA of nuclear protein c-myc was also increased in 5-FMO- and ornithine-treated hTERT-RPE cells, and gene silencing of c-myc prevented the induction of CAT-1 and ODC. Increases in expression of CAT-1, ODC, and c-myc, and the inhibition of these stimulated expression by DFMO were also observed in primary porcine RPE cells. These results suggest that spermine plays an important role in stimulation of mRNA expression of CAT-1, which is a crucial role in ornithine cytotoxicity in OAT-deficient hTERT-RPE cells. ornithine transport; ornithine decarboxylase; c-myc  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号