首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conduction properties of ClC-0 and ClC-1 chloride channels are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We create an open-state configuration of the prokaryotic ClC Cl(-) channel using its known crystallographic structure as a basis. Two residues that are occluding the channel are slowly pushed outward with molecular dynamics to create a continuous ion-conducting path with the minimum radius of 2.5 A. Then, retaining the same pore shape, the prokaryotic ClC channel is converted to either ClC-0 or ClC-1 by replacing all the nonconserved dipole-containing and charged amino acid residues. Employing open-state ClC-0 and ClC-1 channel models, current-voltage curves consistent with experimental measurements are obtained. We find that conduction in these pores involves three ions. We locate the binding sites, as well as pinpointing the rate-limiting steps in conduction, and make testable predictions about how the single channel current across ClC-0 and ClC-1 will vary as the ionic concentrations are increased. Finally, we demonstrate that a ClC-0 homology model created from an alternative sequence alignment fails to replicate any of the experimental observations.  相似文献   

2.
ClC channels are a family of protein molecules containing two ion-permeation pores. Although these transmembrane proteins are important for a variety of physiological functions, their molecular operations are only superficially understood. High-resolution X-ray crystallography techniques have recently revealed the structures of two bacterial ClC channels, but whether vertebrate ClC channel pores are similar to those of bacterial homologues is not clear. To study the pore architecture of the Torpedo ClC-0 channel, we employed the substituted-cysteine-accessibility method (SCAM) and used charged methane thiosulfonate (MTS) compounds to modify the introduced cysteine. Several conclusions were derived from this approach. First, the MTS modification pattern from Y512C to E526C in ClC-0, which corresponds to residues forming helix R in bacterial ClC channels, is indeed consistent with the suggested helical structure. Second, the ClC-0 pore is more accessible to the negatively charged than to the positively charged MTS compound, a pore property that is regulated by the intrinsic electrostatic potential in the pore. Finally, attempts to modify the introduced cysteine at positions intracellular to the selectivity filter did not result in larger MTS modification rates for the open-state channel, suggesting that the fast gate of ClC-0 cannot be located at a position intracellular to the Cl- selectivity filter. Thus, the proposal that the glutamate side chain is the fast gate of the channel is applicable to ClC-0, revealing a structural and functional conservation of ClC channels between bacterial and vertebrate species.  相似文献   

3.
Maduke M  Mindell JA 《Neuron》2003,38(1):1-3
ClC chloride channels orchestrate the movement of chloride necessary for proper neuronal, muscular, cardiovascular, and epithelial function. In this issue of Neuron, Jentsch, Pusch, and colleagues use the structure of a bacterial ClC homolog to guide a mutagenic analysis of inhibitor binding to ClC-0, ClC-1, and ClC-2.  相似文献   

4.
The ClC family of Cl(-) channels and transporters comprises membrane proteins ubiquitously present in species ranging from prokaryotes to mammals. The recently solved structures of the bacterial ClC proteins have provided a good model to guide the functional experiments for the eukaryotic Cl(-) channels. Theoretical calculations based on the bacterial ClC structures have identified several residues critical for the Cl(-) binding energy in the Cl(-) transport pathway. It was speculated that the corresponding residues in eukaryotic Cl(-) channels might play similar roles for the channel functions. In this study, we made a series of mutations in three such residues in eukaryotic ClC Cl(-) channels (K149, G352, and H401 in ClC-0) and studied the functional consequences on the channel properties. A cysteine modification approach was also employed to evaluate the electrostatic effects of the charge placed at these three positions. The experimental results revealed that among the three residues tested, K149 plays the most important role in controlling both the gating and the permeation functions of ClC-0. On the other hand, mutations of H401 alter the channel conductance but not the gating properties, while mutations of G352 result in very little functional consequence. The mutation of K149 into a neutral residue leucine (K149L) shifts the activation curve and leads to flickery channel openings. The anion permeability ratios derived from bi-ionic experiments are also significantly altered in that the selectivity of Cl(-) over other anions is decreased. Furthermore, removing the positive charge at this position reduces and increases, respectively, the accessibility of the negatively and positively charged methane thiosulfonate reagents to the pore. The control of the accessibility to charged MTS reagents and the regulation of the anion permeation support the idea that K149 exerts an electrostatic effect on the channel function, confirming the prediction from computational studies.  相似文献   

5.
Many proteins of the CLC gene family are Cl(-) channels, whereas others, like the bacterial ecClC-1 or mammalian ClC-4 and -5, mediate Cl(-)/H(+) exchange. Mutating a "gating glutamate" (Glu-224 in ClC-4 and Glu-211 in ClC-5) converted these exchangers into anion conductances, as did the neutralization of another, intracellular "proton glutamate" in ecClC-1. We show here that neutralizing the proton glutamate of ClC-4 (Glu-281) and ClC-5 (Glu-268), but not replacing it with aspartate, histidine, or tyrosine, rather abolished Cl(-) and H(+) transport. Surface expression was unchanged by these mutations. Uncoupled Cl(-) transport could be restored in the ClC-4(E281A) and ClC-5(E268A) proton glutamate mutations by additionally neutralizing the gating glutamates, suggesting that wild type proteins transport anions only when protons are supplied through a cytoplasmic H(+) donor. Each monomeric unit of the dimeric protein was found to be able to carry out Cl(-)/H(+) exchange independently from the transport activity of the neighboring subunit. NO(3)(-) or SCN(-) transport was partially uncoupled from H(+) countertransport but still depended on the proton glutamate. Inserting proton glutamates into CLC channels altered their gating but failed to convert them into Cl(-)/H(+) exchangers. Noise analysis indicated that ClC-5 switches between silent and transporting states with an apparent unitary conductance of 0.5 picosiemens. Our results are consistent with the idea that Cl(-)/H(+) exchange of the endosomal ClC-4 and -5 proteins relies on proton delivery from an intracellular titratable residue at position 268 (numbering of ClC-5) and that the strong rectification of currents arises from the voltage-dependent proton transfer from Glu-268 to Glu-211.  相似文献   

6.
The voltage-gated chloride channel ClC-1 is the major contributor of membrane conductance in skeletal muscle and has been associated with the inherited muscular disorder myotonia congenita. Here, we report a novel mutation identified in a recessive myotonia congenita family. This mutation, Gly-499 to Arg (G499R) is located in the putative transmembrane domain 10 of the ClC-1 protein. In contrast to normal ClC-1 channels that deactivate upon hyperpolarization, functional expression of G499R ClC-1 yielded a hyperpolarization-activated chloride current when measured in the presence of a high (134 mM) intracellular chloride concentration. Current was abolished when measured with a physiological chloride transmembrane gradient. Electrophysiological analysis of other Gly-499 mutants (G499K, G499Q, and G499E) suggests that the positive charge introduced by the G499R mutation may be responsible for this unique gating behavior. To further explore the function of domain 10, we mutated two charged residues near Gly-499 of ClC-1. Functional analyses of R496Q, R496Q/G499R, R496K, and E500Q mutant channels suggest that the charged residues in domain 10 are important for normal channel function. Study of these mutants may shed further light on the structure and voltage-gating of this channel.  相似文献   

7.
Members of the ClC family of membrane proteins have been found in a variety of species and they can function as Cl- channels or Cl-/H+ antiporters. Three potential ClC genes are present in the Drosophila melanogaster genome. Only one of them shows homology with a branch of the mammalian ClC genes that encode plasma membrane Cl- channels. The remaining two are close to mammalian homologues coding for intracellular ClC proteins. Using RT-PCR we have identified two splice variants showing highest homology (41% residue identity) to the mammalian ClC-2 chloride channel. One splice variant (DmClC-2S) is expressed in the fly head and body and an additional, larger variant (DmClC-2L) is only present in the head. Both putative Drosophila channels conserve key features of the ClC channels cloned so far, including residues conforming the selectivity filter and C-terminus CBS domains. The splice variants differ in a stretch of 127 aa at the intracellular C-terminal portion separating cystathionate beta synthase (CBS) domains. Expression of either Drosophila ClC-2 variant in HEK-293 cells generated inwardly rectifying Cl- currents with similar activation and deactivation characteristics. There was great similarity in functional characteristics between DmClC-2 variants and their mammalian counterpart, save for slower opening kinetics and faster closing rate. As CBS domains are believed to be sites of regulation of channel gating and trafficking, it is suggested that the extra amino acids present between CBS domains in DmClC-2L might endow the channel with a differential response to signals present in the fly cells where it is expressed.  相似文献   

8.
Voltage-gated ClC chloride channels play important roles in cell volume regulation, control of muscle excitability, and probably transepithelial transport. ClC channels can be functionally expressed without other subunits, but it is unknown whether they function as monomers. We now exploit the properties of human mutations in the muscle chloride channel, ClC-1, to explore its multimeric structure. This is based on analysis of the dominant negative effects of ClC-1 mutations causing myotonia congenita (MC, Thomsen's disease), including a newly identified mutation (P480L) in Thomsen's own family. In a co-expression assay, Thomsen's mutation dramatically inhibits normal ClC-1 function. A mutation found in Canadian MC families (G230E) has a less pronounced dominant negative effect, which can be explained by functional WT/G230E heterooligomeric channels with altered kinetics and selectivity. Analysis of both mutants shows independently that ClC-1 functions as a homooligomer with most likely four subunits.  相似文献   

9.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

10.
ClC-3 is a highly conserved voltage-gated chloride channel, which together with ClC-4 and ClC-5 belongs to one subfamily of the larger group of ClC chloride channels. Whereas ClC-5 is localized intracellularly, ClC-3 has been reported to be a swelling-activated plasma membrane channel. However, recent studies have shown that native ClC-3 in hepatocytes is primarily intracellular. Therefore, we reexamined the properties of ClC-3 in a mammalian cell expression system and compared them with the properties of endogenous swelling-activated channels. Chinese hamster ovary (CHO)-K1 cells were transiently transfected with rat ClC-3. The resulting chloride currents were Cl(-) > I(-) selective, showed extreme outward rectification, and lacked inactivation at positive voltages. In addition, they were insensitive to the chloride channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and were not inhibited by phorbol esters or activated by osmotic swelling. These properties are identical to those of ClC-5 but differ from those previously attributed to ClC-3. In contrast, nontransfected CHO-K1 cells displayed an endogenous swelling-activated chloride current, which was weakly outward rectifying, inactivated at positive voltages, sensitive to NPPB and DIDS, and inhibited by phorbol esters. These properties are identical to those previously attributed to ClC-3. Therefore, we conclude that when expressed in CHO-K1 cells, ClC-3 is an extremely outward rectifying channel with similar properties to ClC-5 and is neither activated by cell swelling nor identical to the endogenous swelling-activated channel. These data suggest that ClC-3 cannot be responsible for the swelling-activated chloride channel under all circumstances.  相似文献   

11.
The role of the carboxyl terminus in ClC chloride channel function   总被引:4,自引:0,他引:4  
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.  相似文献   

12.
CLC chloride channels comprise a gene family with nine mammalian members. Probably all CLC channels form homodimers, and some CLC proteins may also associate to heterodimers. ClC-0 and ClC-1, the only CLC channels investigated at the single-channel level, display two conductances of equal size which are thought to result from two separate pores, formed individually by the two monomers. We generated concatemeric channels containing one subunit of ClC-0 together with one subunit of ClC-1 or ClC-2. They should display two different conductances if one monomer were sufficient to form one pore. Indeed, we found a 8-picosiemens (pS) conductance (corresponding to ClC-0) that was associated with either a 1.8-pS (ClC-1) or a 2.8-pS (ClC-2) conductance. These conductances retained their typical gating, but the slow gating of ClC-0 that affects both pores simultaneously was lost. ClC-2 and ClC-0 current components were modified by point mutations in the corresponding subunit. The ClC-2 single pore of the mixed dimer was compared with the pores in the ClC-2 homodimer and found to be unaltered. We conclude that each monomer individually forms a gated pore. CLC dimers in general must be imagined as having two pores, as shown previously for ClC-0.  相似文献   

13.
ClC chloride channels, which are ubiquitously expressed in mammals, have a unique double-barreled structure, in which each monomer forms its own pore. Identification of pore-lining elements is important for understanding the conduction properties and unusual gating mechanisms of these channels. Structures of prokaryotic ClC transporters do not show an open pore, and so may not accurately represent the open state of the eukaryotic ClC channels. In this study we used cysteine-scanning mutagenesis and modification (SCAM) to screen >50 residues in the intracellular vestibule of ClC-0. We identified 14 positions sensitive to the negatively charged thiol-modifying reagents sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) or sodium 4-acetamido-4'-maleimidylstilbene-2'2-disulfonic acid (AMS) and show that 11 of these alter pore properties when modified. In addition, two MTSES-sensitive residues, on different helices and in close proximity in the prokaryotic structures, can form a disulfide bond in ClC-0. When mapped onto prokaryotic structures, MTSES/AMS-sensitive residues cluster around bound chloride ions, and the correlation is even stronger in the ClC-0 homology model developed by Corry et al. (2004). These results support the hypothesis that both secondary and tertiary structures in the intracellular vestibule are conserved among ClC family members, even in regions of very low sequence similarity.  相似文献   

14.
The CLC protein family contains plasma membrane chloride channels and the intracellular chloride-proton exchangers ClC-3–7. The latter proteins mainly reside on the various compartments of the endosomal-lysosomal system where they are involved in the luminal acidification or chloride accumulation. Although their partially overlapping subcellular distribution has been studied extensively, little is known about their targeting mechanism. In a comprehensive study we now performed pulldown experiments to systematically map the differential binding of adaptor proteins of the endosomal sorting machinery (adaptor proteins and GGAs (Golgi-localized, γ-ear containing, Arf binding)) as well as clathrin to the cytosolic regions of the intracellular CLCs. The resulting interaction pattern fitted well to the known subcellular localizations of the CLCs. By mutating potential sorting motifs, we could locate almost all binding sites, including one already known for ClC-3 and several new motifs for ClC-5, -6, and -7. The impact of the identified binding sites on the subcellular localization of CLC transporters was determined by heterologous expression of mutants. Surprisingly, some vesicular CLCs retained their localization after disruption of interaction sites. However, ClC-7 could be partially shifted from lysosomes to the plasma membrane by combined mutation of N-terminal sorting motifs. The localization of its β-subunit, Ostm1, was determined by that of ClC-7. Ostm1 was not capable of redirecting ClC-7 to lysosomes.  相似文献   

15.
In mammalian nonpigmented ciliary epithelial (NPE) cells, hyposmotic stimulation leading to cell swelling activates an outwardly rectifying Cl(-) conductance (I(Cl,swell)), which, in turn, results in regulatory volume decrease. The aim of this study was to determine whether increased trafficking of intracellular ClC-3 Cl channels to the plasma membrane could contribute to the I(Cl,swell) following hyposmotic stimulation. Our results demonstrate that hyposmotic stimulation reversibly activates an outwardly rectifying Cl(-) current that is inhibited by phorbol-12-dibutyrate and niflumic acid. Transfection with ClC-3 antisense, but not sense, oligonucleotides reduced ClC-3 expression as well as I(Cl,swell). Intracellular dialysis with 2 different ClC-3 antibodies abolished activation of I(Cl,swell). Immunofluorescence microscopy showed that hyposmotic stimulation increased ClC-3 immunoreactivity at the plasma membrane. To determine whether this increased expression of ClC-3 at the plasma membrane could be due to increased vesicular trafficking, we examined membrane dynamics with the fluorescent membrane dye FM1-43. Hyposmotic stimulation rapidly increased the rate of exocytosis, which, along with ICl,swell, was inhibited by the phosphoinositide-3-kinase inhibitor wortmannin and the microtubule disrupting agent, nocodazole. These findings suggest that ClC-3 channels contribute to I(Cl,swell) following hyposmotic stimulation through increased trafficking of channels to the plasma membrane.  相似文献   

16.
Li Y  Rivera D  Ru W  Gunasekera D  Kemp RG 《Biochemistry》1999,38(49):16407-16412
Earlier studies indicated an evolutionary relationship between bacterial and mammalian phosphofructo-1-kinases (PFKs) that suggests duplication, tandem fusion, and divergence of catalytic and effector binding sites of a prokaryotic ancestor to yield in eukaryotes a total of six organic ligand binding sites. The identities of residues involved in the four binding sites for allosteric ligands in mammalian PFK have been inferred from this assumed relationship. In the current study of the C isozyme of rabbit PFK, two arginine residues that can be aligned with important residues in the catalytic and allosteric binding sites of bacterial PFK and that are conserved in all eukaryotic PFKs were mutated. Arg-48 was suggested previously to be part of either the ATP inhibitory or the adenine nucleotide activating site. However, the mutant enzyme showed only slightly less sensitivity to ATP inhibition and was fully activatable by adenine nucleotides. On the other hand, sensitivity to citrate and 3-phosphoglycerate inhibition was lost, indicating an important role for Arg-48 in the binding of these allosteric effectors. Mutation of Arg-481, homologous to an active site residue in bacterial PFK, prevented binding and allosteric activation by fructose 2,6-bisphosphate. A new relationship between the allosteric sites of mammalian PFK and bacterial PFK is proposed.  相似文献   

17.
ClC-5, an endosomal Cl/H+ antiporter that is mutated in Dent disease, is essential for endosomal acidification and re-uptake of small molecular weight proteins in the renal proximal tubule. Eukaryotic chloride channels (CLCs) contain two cytoplasmic CBS domains, motifs present in different proteins, the function of which is still poorly understood. Structural studies have shown that ClC-5 can bind to ATP at the interface between the CBS domains, but so far the potential functional consequences of nucleotide binding to ClC-5 have not been investigated. Here, we show that the direct application of ATP, ADP and AMP in inside-out patch experiments potentiates the current mediated by ClC-5 with similar affinities. The nucleotides increase the probability of ClC-5 to be in an active, transporting state. The residues Tyr 617 and Asp 727, but not Ser 618, are crucial for the potentiation. These results provide a mechanistic and structural framework for the interpretation of nucleotide regulation of a CLC transporter.  相似文献   

18.
ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a major factor in fatigue. Here we identify a novel mechanism linking excitability to metabolic state by showing that ClC-1 channels are modulated by ATP. The high concentration of ATP in resting muscle effectively inhibits ClC-1 activity by shifting the voltage gating to more positive potentials. ADP and AMP had similar effects to ATP, but IMP had no effect, indicating that the inhibition of ClC-1 would only be relieved under anaerobic conditions such as intense muscle activity or ischemia, when depleted ATP accumulates as IMP. The resulting increase in ClC-1 activity under these conditions would reduce muscle excitability, thus contributing to fatigue. We show further that the modulation by ATP is mediated by cystathionine beta-synthase-related domains in the cytoplasmic C terminus of ClC-1. This defines a function for these domains as gating-modulatory domains sensitive to intracellular ligands, such as nucleotides, a function that is likely to be conserved in other ClC proteins.  相似文献   

19.
Evidence has been reported by us and others supporting the important roles of chloride channels in a number of osteoblast cell functions. The ClC-3 chloride channel is activated by estradiol binding to estrogen receptor alpha on the cell membranes of osteoblasts. However, the functions of these chloride channels in estrogen regulation of osteoblast metabolism remain unclear. In the present study, the roles of chloride channels in estrogen regulation of osteoblasts were investigated in the osteoblastic cell line MC3T3-E1. Estrogen 17β-estradiol enhanced collagen I protein expression, alkaline phosphatase activity, and mineralization were inhibited, by chloride channel blockers. Estradiol promoted ClC-3 chloride channel protein expression. Silencing of ClC-3 chloride channel expression prevented the elevation of osteodifferentiation in osteoblasts, which were regulated by estrogen. These data suggest that estrogen can regulate bone formation by activating ClC-3 chloride channels and the activation of ClC-3 chloride channels can enhance the osteodifferentiation in osteoblasts.  相似文献   

20.
Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure-antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2-10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号